DOI QR코드

DOI QR Code

Improvement of blood glucose control in type 2 diabetic db/db mice using Platycodon grandiflorum seed extract

도라지 종자 추출물의 처리가 제2형 당뇨 db/db 마우스의 혈당개선에 미치는 효과

  • Kim, Tae Yeong (Department of Foods and Nutrition, Kookmin University) ;
  • Kim, Seok Joong (Department of Food and Nutrition, Dongduk Women's University) ;
  • Imm, Jee-Young (Department of Foods and Nutrition, Kookmin University)
  • 김태영 (국민대학교 식품영양학과) ;
  • 김석중 (동덕여자대학교 식품영양학과) ;
  • 임지영 (국민대학교 식품영양학과)
  • Received : 2019.12.13
  • Accepted : 2019.12.31
  • Published : 2020.02.29

Abstract

The biological activities of Platycodon grandiflorum (PG) root extracts have been studied intensively, whereas there are limited number of studies on PG seed extract (PGSE). PGSE was prepared by ethanol extraction, and its antidiabetic effect was evaluated in mice with type 2 diabetes (C57BLKS/J-db/db). Results indicated that the administration of high-dose PGSE (600 mg/kg, wb) significantly stabilized the blood glucose levels, as evidenced by the results of the oral glucose tolerance test. Mice treated with high-dose PGSE exhibited significantly lower serum hemoglobin A1c, insulin, and leptin levels after eight weeks of feeding trial (p<0.05). High-dose PGSE administration significantly improved glucose uptake in the femoral muscle of db/db mice by activating both IRS-1/PI3K/AKT/AS160 and AMPK phosphorylation pathways. GLUT4 translocation from the cytosol to the plasma membrane increased 1.7-fold in the PGSE high-dose group. These results suggest that PGSE has potential for development as an antidiabetic agent.

PGSE의 혈당조절 효과를 평가하기 위하여 제2형 당뇨 동물모델을 이용하여 8주간의 동물실험을 진행한 결과, 고농도 PGSE(600 mg/kg)의 투여는 경구 포도당 내성 및 혈당 수준을 유의적으로 감소시켰으며(p<0.05), 당화혈색소도 유의적으로 낮은 수준을 유지시켰다(p<0.05). 또한, 혈청 인슐린과 렙틴 농도 역시 대조군과 비교하여 PGSE 고농도 처리군에서 유의적으로 감소하였다(p<0.05). PGSE 투여는 db/db 마우스의 골격근에서 인슐린 의존적 세포신호전달경로를 유의적으로 활성화시켰으며, AMPK 인산화를 촉진시키고, 골격근내 포도당 흡수를 위한 GLUT4의 세포막으로의 전이를 대조군 대비 약 1.7배 증가시켰다. 이러한 결과를 근거로 할 때 PGSE는 항 당뇨병 치료제로서의 잠재적 가능성을 가진 것으로 판단된다.

Keywords

References

  1. Abaci A, Bekem O, Unuvar T, Ozer E, Bober E, Arslan N, Ozturk Y, Buyukgebiz A. Hepatic glycogenosis: a rare cause of hepatomegaly in Type 1 diabetes mellitus. J. Diabetes Complicat. 22: 325-328 (2008) https://doi.org/10.1016/j.jdiacomp.2007.11.002
  2. American Diabetes Association. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 26: s5-s20 (2003) https://doi.org/10.2337/diacare.26.2007.S5
  3. Bansal P, Paul P, Mudgal J, Nayak PG, Pannakal ST, Priyadarsini KI, Unnikrishnan MK. Antidiabetic, antihyperlipidemic and antioxidant effects of the flavonoid rich fraction of Pilea microphylla (L.) in high fat diet/streptozotocin-induced diabetes in mice. Exp. Toxicol. Pathol. 64: 651-658 (2012) https://doi.org/10.1016/j.etp.2010.12.009
  4. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal. Biochem. 72: 248-254 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
  5. Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J. Clin. Invest. 114: 147-152 (2004) https://doi.org/10.1172/JCI200422422
  6. Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus-present and future perspectives. Nat. Rev. Endocrinol. 8: 228-236 (2012) https://doi.org/10.1038/nrendo.2011.183
  7. Chen L, Tian G, Tang W, Luo W, Liu P, Ma Z. Protective effect of luteolin on streptozotocin-induced diabetic renal damage in mice via the regulation of RIP140/NF-${\kappa}B$ pathway and insulin signaling pathway. J. Funct. Foods 22: 93-100 (2016) https://doi.org/10.1016/j.jff.2016.01.023
  8. Choi CS. Pathogenesis of insulin resistance. Korean J. Med. 77: 171-177 (2009)
  9. DeFronzo RA, Ferrannini E, Simonson DC. Fasting hyperglycemia in non-insulin-dependent diabetes mellitus: contributions of excessive hepatic glucose production and impaired tissue glucose uptake. Metabolis. 38: 387-395 (1989) https://doi.org/10.1016/0026-0495(89)90129-7
  10. El-Gied AAA, Joseph MRP, Mahmoud IM, Abdelkareem AM, Hakami A, Hamid ME. Antimicrobial activities of seed extracts of Mango (Mangifera indica L.). Adv. Microbiol. 2: 571-576 (2012) https://doi.org/10.4236/aim.2012.24074
  11. Fuller J, Shipley M, Rose G, Jarrett RJ, Keen H. Coronary-heart-disease risk and impaired glucose tolerance The Whitehall study. Lancet 315: 1373-1376 (1980) https://doi.org/10.1016/S0140-6736(80)92651-3
  12. Guo H, Xia, Min, Zou T, Ling W, Zhong R, Zhang W. Cyanidin 3-glucoside attenuates obesity-associated insulin resistance and hepatic steatosis in high-fat diet-fed and db/db mice via the transcription factor FoxO1. J. Nutr. Biochem. 23: 349-360 (2012) https://doi.org/10.1016/j.jnutbio.2010.12.013
  13. Hassid WJ, Abraham S. Chemical procedures for analysis of polysaccharides. Method. Enzymol. 3: 34-50 (1957) https://doi.org/10.1016/S0076-6879(57)03345-5
  14. Herman MA, Kahn BB. Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony. J. Clin. Invest. 116: 1767-1775 (2006) https://doi.org/10.1172/JCI29027
  15. Huang S, Czech MP. The GLUT4 glucose transporter. Cell Metab. 5: 237-252 (2007) https://doi.org/10.1016/j.cmet.2007.03.006
  16. Iwasa J, Shimizu M, Shiraki M, Shirakami Y, Sakai H, Terakura Y, Takai K, Tsurumi H, Tanaka T, Moriwaki H. Dietary supplementation with branchedchain amino acids suppresses diethylnitrosamineinduced liver tumorigenesis in obese and diabetic C57BL/KsJdb/db mice. Cancer Sci. 101: 460-467 (2010) https://doi.org/10.1111/j.1349-7006.2009.01402.x
  17. Jessen N, Goodyear LJ. Contraction signaling to glucose transport in skeletal muscle. J. Appl. Physiol. 99: 330-337 (2005) https://doi.org/10.1152/japplphysiol.00175.2005
  18. Katsanos CS. Lipid-induced insulin resistance in the liver. Sports Med. 34: 955-965 (2004) https://doi.org/10.2165/00007256-200434140-00002
  19. Kim KS, Seo EK, Lee YC, Lee TK, Cho YW, Ezaki O, Kim CH. Effect of dietary Platycodon grandiflorum on the improvement of insulin resistance in obese Zucker rats. J. Nutr. Biochem. 11: 420-424 (2000) https://doi.org/10.1016/S0955-2863(00)00098-X
  20. Kim MA, Jeong YS, Chun Gei, Taek, Cha YS. Antihyperlipidemic and glycemic control effects of mycelia of Inonotus obliquus including protein-bound polysaccharides extract in C57BL/6J mice. J. Korean Soc. Food Sci. Nutr. 38:667-673 (2009) https://doi.org/10.3746/jkfn.2009.38.6.667
  21. Kim Y, Choi JY, Ryu R, Lee J, Cho SJ, Kwon EY, Lee MK, Liu KH, Rina Y, Sung MK, Choi MS. Platycodon grandiflorus root extract attenuates body fat mass, hepatic steatosis and insulin resistance through the interplay between the liver and adipose tissue. Nutrients 8: 532 (2016) https://doi.org/10.3390/nu8090532
  22. Kusakabe T, Tanioka H, Ebihara K, Hirata M, Miyamoto L, Miyanaga F, Hige H, Aotani D, Fujisawa T, Masuzaki H, Hosoda, K, Nakao K. Beneficial effects of leptin on glycaemic and lipid control in a mouse model of type 2 diabetes with increased adiposity induced by streptozotocin and a high-fat diet. Diabetologia 52: 675-683 (2009) https://doi.org/10.1007/s00125-009-1258-2
  23. Lee KJ, Choi CY, Chung YC, Kim YS, Ryu SY, Roh SH, Jeong HG. Protective effect of saponins derived from roots of Platycodon grandiflorum on tert-butyl hydroperoxide-induced oxidative hepatotoxicity. Toxicol. Lett. 147: 271-282 (2004) https://doi.org/10.1016/j.toxlet.2003.12.002
  24. Liu JF, Ma Y, Wang Y, Du ZY, Shen JK, Peng HL. Reduction of lipid accumulation in HepG2 cells by luteolin is associated with activation of AMPK and mitigation of oxidative stress. Phytother. Res. 25: 588-596 (2011) https://doi.org/10.1002/ptr.3305
  25. Nyakudya E, Jeong JH, Lee NK, Jeong YS. Platycosides from the roots of Platycodon grandiflorum and their health benefits. Prev. Nutr. Food Sci. 19: 59 (2014) https://doi.org/10.3746/pnf.2014.19.2.059
  26. Park HJ, Jung UJ, Cho SJ, Jung HK, Shim S, Choi MS. Citrus unshiu peel extract ameliorates hyperglycemia and hepatic steatosis by altering inflammation and hepatic glucose-and lipid-regulating enzymes in db/db mice. J. Nutr. Biochem. 24: 419-427 (2013) https://doi.org/10.1016/j.jnutbio.2011.12.009
  27. Park K, Yoon HJ, Imm, JY, Go GW. Hovenia dulcis extract attenuates high-fat diet-induced hepatic lipid accumulation and hypertriglyceridemia in C57BL/6 Mice. J. Med. Food 22: 74-80 (2019) https://doi.org/10.1089/jmf.2018.4224
  28. Park SH, Lee WY, Kim SW. The relative risk of metabolic syndrome defined by adult treatment panel III according to insulin resistance in Korean population. Korean J. Med. 64: 552-560 (2003)
  29. Park YS, Yoon Y, Ahn HS. Platycodon grandiflorum extract represses upregulated adipocyte fatty acid binding protein triggered by a high fat feeding in obese rats. World J. Gastroentero. 13: 3493-3499 (2007) https://doi.org/10.3748/wjg.v13.i25.3493
  30. Pruessner JC, Kirschbaum C, Meinlschmid G, Hellhammer DH. Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrino. 28: 916-931 (2003) https://doi.org/10.1016/S0306-4530(02)00108-7
  31. Sáinz N, Barrenetxe J, Moreno-Aliaga MJ, Martinez JA. Leptin resistance and diet-induced obesity: central and peripheral actions of leptin. Metabolis. 64: 35-46 (2015) https://doi.org/10.1016/j.metabol.2014.10.015
  32. Seo KI, Choi MS, Jung UJ, Kim HJ, Yeo J, Jeon SM, Lee MK. Effect of curcumin supplementation on blood glucose, plasma insulin, and glucose homeostasis related enzyme activities in diabetic db/db mice. Mol. Nutr. Food Res. 52: 995-1004 (2008) https://doi.org/10.1002/mnfr.200700184
  33. Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, DePinho RA, Cantley LC. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310: 1642-1646 (2005) https://doi.org/10.1126/science.1120781
  34. Shulman GI. Cellular mechanisms of insulin resistance. J. Clin. Invest. 106: 171-176 (2000) https://doi.org/10.1172/JCI10583
  35. Sivaprakasapillai B, Edirisinghe I, Randolph J, Steinberg F, Kappagoda T. Effect of grape seed extract on blood pressure in subjects with the metabolic syndrome. Metab. Clin. Exp. 58: 1743-1746 (2009) https://doi.org/10.1016/j.metabol.2009.05.030
  36. Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2: 1231-1246 (2010) https://doi.org/10.3390/nu2121231
  37. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J. Clin. Endocr. Metab. 86: 1930-1935 (2001) https://doi.org/10.1210/jcem.86.5.7463
  38. Xu N, Zhang L, Dong J, Zhang X, Chen YG, Bao B, Liu J. Lowdose diet supplement of a natural flavonoid, luteolin, ameliorates dietinduced obesity and insulin resistance in mice. Mol. Nutr. Food Res. 58: 1258-1268 (2014) https://doi.org/10.1002/mnfr.201300830
  39. Yoon HJ, Bang MH, Kim H, Imm JY. Improvement of palmitateinduced insulin resistance in C2C12 skeletal muscle cells using Platycodon grandiflorum seed extracts. Food Biosci. 25: 61-67 (2018) https://doi.org/10.1016/j.fbio.2018.08.002
  40. Zang Y, Igarashi K, Li Y. Anti-diabetic effects of luteolin and luteolin-7-O-glucoside on KK-A y mice. Biosci. Biotech. Bioch. 80: 1580-1586 (2016) https://doi.org/10.1080/09168451.2015.1116928
  41. Zhang W, Welihinda A, Mechanic J, Ding H, Zhu L, Lu Y, Deng Z, Sheng Z, Lv B, Chen Y, Roberge JY, Seed B, Wang YX. EGT1442, a potent and selective SGLT2 inhibitor, attenuates blood glucose and HbA1c levels in db/db mice and prolongs the survival of stroke-prone rats. Pharmacol. Res. 63: 284-293 (2011) https://doi.org/10.1016/j.phrs.2011.01.001