Apoptotic Cell Death of Human Lung Carcinoma A549 Cells by an Aqueous Extract from the Roots of Platycodon grandiflorum

길경이 인체 폐암세포에 미치는 영향에 대한 실험적 연구

  • Lee Sung Yeoul (Department of Internal medicine, College, of Oriental Medicine Dongeui University) ;
  • Kim Won Ill (Department of Internal medicine, College, of Oriental Medicine Dongeui University) ;
  • Park Dong Il (Department of Internal medicine, College, of Oriental Medicine Dongeui University)
  • 이성열 (동의대학교 한의과대학 내과학교실) ;
  • 김원일 (동의대학교 한의과대학 내과학교실) ;
  • 박동일 (동의대학교 한의과대학 내과학교실)
  • Published : 2003.08.01

Abstract

Platycodi Radix, the root of Platycodon grandiflorum, commonly known as Doraji, is used as a traditional oriental medicine. Extracts from the roots of P. grandiflorum have been reported to have wide ranging health benefits. In the present study, we investigated the effects of an aqueous extract from the roots of P. grandiflorum (AEPG) on the growth of human lung carcinoma A549 cells. Results obtained are as fellow; AEPG treatment resulted in the inhibition of the cell viability of A549 cells in a concentration-dependent manner. Upon treatment with AEPG, A549 cells developed many of the hallmark features of apoptosis, including condensation of chromatin. Flow cytometry analysis confirmed that AEPG increased populations of apoptotic-sub G1 phase. Western blot and RT-PCR analyses indicated that the expressions of Bcl-2 was down-regulated but Bax was up-regulated in AEPG-treated A549 cells. AEPG-induced apoptotis of A549 cells was associated with rroteolytic cleavage and activation of caspase-3, release of cytochrome c from mitochondria into cytosol and down-regulation of Akt and phospho-Akt proteins in a dose-dependent manner. Induction of apoptosis by AEPG treatment was associated with inhibition and/or degradation of apoptotic target proteins such as poly(ADP-ribose) polymerase, β-catenin and phospholipase C-γ 1. AEPG treatment inhibited the levels of cyclooxygenases protein of A549 cells, which was associated with the inhibition of prostaglandin E2 accumulation in a concentration-dependent fashion. Taken together, these findings suggest that P. grandiflorum has strong potential for development as an agent for prevention against human lung cancer.

Keywords

References

  1. J.Pharm.Soc.Korea v.19 Pharmacological activities of crude platycodin. Lee,E.B.
  2. Biol.Pharm.Bull. v.18 Studies on antiinflammatory effect of Japanese oriental medicines (kampo medicines) used to treat inflammatory diseases. Ozaki,Y. https://doi.org/10.1248/bpb.18.559
  3. Planta Med. v.68 Platycodin D and D3 increase airway mucin release in vivo and in vitro in rats and hamsters. Shin,C.Y.;Lee,W.J.;Lee,E.B.;Choi,E.Y.;Ko,K.H. https://doi.org/10.1055/s-2002-23130
  4. De Candolle. Arg. Chem. Biotech. v.40 Pharmaceutical substances of Platycodon grandiflorum(jacquin) A. Chung,J.H.;Shin,P.G.;Ryu,J.C.;Jang,D.S.;Cho,S.H.
  5. Planta Med. v.65 A comparative study on commercial, botanical gardens and wild samples of the roots of Platycodon grandiflorum by HPLC analysis. Saeki,T.;Koike,K.;Nikaido,T.; https://doi.org/10.1055/s-1999-14021
  6. DC. Yakugaku Zaxxhi. v.92 Pharmacological studies on Platycodon grandiflorum A. Takagi,K.;Lee,E.B. https://doi.org/10.1248/yakushi1947.92.8_951
  7. Shoyakugaku Zasshi J.Pharm.Soc.Jpn. v.40 Immune pharmacological studies on platicodi radix.I.Effect on the phagocytosis in the mouse. Kiibo,M.;Nagao,T.;Matsuda,H.;Namba,K.
  8. Kor.J.Food Nut. v.9 Studies on immunomodulation function of components separated from Platycodi radix. Bae,M.J.;Park,M.H.;Son,G.M.
  9. Cancer Metastasis.Rev. v.18 Cell adhesion molecules in the development and progression of malignant melanoma. Johnson,J.P. https://doi.org/10.1023/A:1006304806799
  10. Cancer Lett. v.166 Augmentation of macrophage function by and aqueous extract isolated from Platycodon grandiflorum. Choi,C.Y.;Kim J.Y.;Kim,Y.S.;Chung,Y.C.;Hahm,K.S.;Jeong,H.G. https://doi.org/10.1016/S0304-3835(01)00440-2
  11. Int. Immunopharmacol. v.1 Polysaccharide isolated from the radix of Platycodon grandiflorum selectively activates B cells and macrophages but not T cells. Han,S.B.;Park,H.S.;Lee,K.H.;Lee,C.W.;Lee,S.H.;Kim,H.C.;Kim.Y.S.;Lee,H.S.;Kim,H.M. https://doi.org/10.1016/S1567-5769(01)00124-2
  12. Shoyakugaku Zasshi J.Pharm.Soc.Jpn. v.40 Immune pharmacological studies on platicodi radix (II). Antitumor activity of inulin from platicodi radix. Nagao,T.;Matsuda,H.;Namba,K.;Kubo.M.
  13. Planta Med. v.67 Inhibition of prostaglandin E2 production by platycodin D isolated from the root of Platycodon grandiflorum. Kim,Y.P.;Lee,E.N.;Kim,Y.S.;Li,D.;Ban,H.S.;Lim,S.S.;Shin,K.H.;Ohuchi,K. https://doi.org/10.1055/s-2001-14317
  14. Yakhak Hoeji v.42 Antitumor and immunonodulatory activities of the Platycodon grandiflorum cultivated for more than 20 years. Kim,Y.S.;Lee,E.B.;Kim,K.J.;Lee,Y.T.;Gho,K.B.;Chung,Y.C.
  15. Kor.J.Food Sci.Technol. v.30 Effect of Platycodon grandiflorum DC extract on the growth of cancer cell lines Lee,J.Y.;Hwang,W.I.;Lim,S.T.
  16. Cancer Lett. v.174 Hepatoprotective effects of Platycodon grandiflorum on acetaminophen-induced liver damage in mice. Lee,K.J.;You,H.J.;Park,S.J.;Kim,Y.S.;Chung,Y.C.;Jeong,T.C.;Jeong,H.G. https://doi.org/10.1016/S0304-3835(01)00678-4
  17. Int.Immunopharmacol. v.1 Aqueous extract isolated from Platycodon grandiflorum elicits the release of nitric oxide and tumor necrosis tactor-α from murine macrophages. Choi,C.Y.;Kim,J.Y.;Kim,Y.S.;Chung,Y.C.;Seo,J.K.;Jeong,H.G. https://doi.org/10.1016/S1567-5769(01)00047-9
  18. Am.J.Pathol. v.136 Apoptosis.The role of the endonuclease. Arends,M.J.;Morris,R.G.;Wylli,A.H.
  19. Cell Biol.Int. v.17 Multiple pathways to apoptosis. Evans,V.G. https://doi.org/10.1006/cbir.1993.1087
  20. Semin.Nephrol. v.18 Necrosis and apoptosis in acute renal failure. Lieberthal,W.;Koh,J.S.;Levine,J.S.
  21. Science v.263 Premature p34cdc2 activation required for apoptosis. Shi.L.;Nishioka,W.K.;Th'ng,J.;Bradbury,E.M.;Litchfield,D.W.;Greenberg,A.H. https://doi.org/10.1126/science.8108732
  22. Cell.Mol.Biol.Res. v.40 Apoptosis and the cell cycle. Chiarugi,V.;Magnelli,L.;Basi,G.
  23. Cancer Res. v.54 WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. El-Deiry,W.S.;Harper,J.W.;O'connor,P.M.;Velculescu,V.E.;Canman,C.E.;Jackman,J.;Pietenpol,J.A.;Burrell,M.;Hill,D.E.;Wang,Y.;Wiman,K.G.;Mercer,W.E.;Kastan,M.B.;Kohn,K.W.;Elledge,S.J.;Kinzler,K.W.;Vogelstain,B.
  24. Cell v.80 Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Miyashith,T.;Reed,J.C. https://doi.org/10.1016/0092-8674(95)90412-3
  25. Exp.Cell Res. v.256 The Bcl-2 protein family. Antonsson,B.;Martinou,J.C. https://doi.org/10.1006/excr.2000.4839
  26. Cell v.88 Apoptosis by death factor. Nagata,S. https://doi.org/10.1016/S0092-8674(00)81874-7
  27. Annu.Rev.Med. v.53 Cyclooxygenase-2:a therapeutic target. Turini,M.E.;DuBois,R.N. https://doi.org/10.1146/annurev.med.53.082901.103952
  28. Best Pract.Res.Clin.Gastroenterol. v.15 COX-2 inhibition and prevention of cancer. Giercksky,K.E. https://doi.org/10.1053/bega.2001.0237
  29. Mutat.Res. v.480 Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals:down-regulation of COX-2 and iNOS through suppression of NF-κ B activation. Surh,Y.J.;Chun,K.S.;Cha,H.H.;Han,S.S.;Keum,Y.S.;Park,K.K.;Lee,S.S. https://doi.org/10.1016/S0027-5107(01)00183-X
  30. Int.J.Mol.Med. v.2 Cox-2,iNOS and -53 as play-makers of tumor angiogenesis. Chiargi,V.Magnelli,L.;Gallo,O.
  31. J.Natl.Cancer Inst. v.94 Nonsteroidal anti-inflammatory drugs as anticancer agents:mechanistic,pharmacologic, and clinical issues. Thun,M.J.;Henley,S.J.Patrono,C. https://doi.org/10.1093/jnci/94.4.252
  32. J.Kor.Asso.Cancer Pre. v.7 The aqueous extract from Platycodi radix attenuates lipopolysaccharide-induced NF-κ B activation in RAW 264.7 cell and acute lung injury in rats Lee,J.H.;Choi,Y.H.;Choi,B.T.
  33. Int.J.Oncol. v.21 Tetrandrine-induced cell cycle arrest and apoptosis in A549 human lung carcinoma cells. Lee,J.H.;Kang,G.H.;Kim,K.C.;Kim,K.M.;Park,D.I.;Choi,B.T.;Kang,H.S.;Lee,Y.T.;Choi,Y.H.
  34. Exp.Mol.Med. v.33 Research technics for the cell cycle study Choi,Y.H. https://doi.org/10.1038/emm.2001.3
  35. Int.J.Oncol. v.17 Induction of apoptosis by ursolic acid through activation of caspases and down-regulation of c-IAPs in human prostate epithelial cells. Choi,Y.H.;Bae,J.H.;Yoo,M.A.;Chung,H.Y.;Kim,N.D.;Kim,K.W.
  36. Int.J.Oncol. v.18 Apoptotic activity of novel bile acid derivatives in human leukemic T cells through the activation of caspases. Choi,Y.H.;Im,E.O.;Suh,H.S.;Jin,Y.E.;Lee,W.H.;Woo,Y.H.;Kim,K.W.;Kim,N.D.
  37. J.Biol.Chem. v.272 Regulation of cyclin D1 by calpain protease. Choi,Y.H.;Lee,S.J.;Nguyen,P.;Jang,J.S.;Lee,L.;Wu,M.L.;Takano,E.;Maki,M.;Henkart,P.A.;Trepel,J.B. https://doi.org/10.1074/jbc.272.45.28479
  38. Nature v.371 Cleavage of poly ADP-ribose polymerase by a proteinase with properties like ICE. Lazebnik,Y.A.;Kaufmann,S.H.;Desnoyers,S.;Poirier,G.G.;Earnshaw,W.C. https://doi.org/10.1038/371346a0
  39. Cell v.81 Yama/CPP32, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Tewari,M.;Quan,L.T.;O'Rourke,K.;Desnoyers,S.;Zeng,Z.;Beidler,D.R.;Poirier,G.G.;Salvesen,G.S.;Dixit,V.M. https://doi.org/10.1016/0092-8674(95)90541-3
  40. Cancer Res. v.53 Specific proteolytic cleavage of poly(ADP-ribose) polymerase:an early marker of chemotherapy-induced apoptosis. Kaufmann,S.H.;Desnoyers,S.;Ottaviano,Y.;Davidson,N.E.;Poirier,G.G.
  41. Br.J.Surg. v.87 E0cadherin-catenin cell-cell adhesion complex and human cancer. Wijnhoven,B.P.;Dinjens,W.N.;Pignatelli,M. https://doi.org/10.1046/j.1365-2168.2000.01513.x
  42. Acta.Gastroenterol.Belg. v.62 The role of the E-cadherin/catenin complex in gastrointestinal cancer. Debruyne,P.;Vermeulen,S.;Mareel,M.
  43. Int.J.Biochem.Cell.Biol. v.31 Apoptosis-associated cleavage of ß-catenin in human colon cancer and rat hepatoma cells. Fukuda,K. https://doi.org/10.1016/S1357-2725(98)00119-8
  44. J.Biol.Chem. v.275 Apoptosis-induced cleavage of ß-catenin by caspase-3 results in proteolytic fragments with reduced transactivation potential. Steinhusen,U.;Badock,V.;Bauer,A.;Behrens,J.;Wittman-Liebold,B.;Dorken,B.;Bommert,K. https://doi.org/10.1074/jbc.M001458200
  45. Oncogene. v.17 Anti-apoptotic versus pro-apoptotic signal transduction:checkpoints and stop signs along the road to death. Jarpe,M.B.;Widmann,C.;Knall,C.;Schlesinger,T.K.;Gibson,S.;Yujiri,T.;Fanger,G.R.;Gelfand,E.W.;Johnson,G.L. https://doi.org/10.1038/sj.onc.1202183
  46. Science v.275 Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Franke,T.F.;Kaplan,D.R.;Cantley,L.C.;Toker,A.
  47. Science v.244 Studies of inositol phospholipid-specific phospholipase C. Rhee,S.G.;Suh,P.G.;Ryu,S.H.;Lee,S.Y. https://doi.org/10.1126/science.2541501
  48. Cancer Res. v.57 Overexpression of phospholipase C-1 in rat 3Y1 fibroblast cells leads to malignant transformation. Chang,J.S.;Noh,D.Y.;Park,I.A.;Kim,M.J.;Song,H.;Ryu,S.H.;Suh,P.G.
  49. J.Neurochem. v.71 Src homology domains of phospholipase C gamma1 inhibit nerve growth factor-induced differentiation of PC12 cells. Bae,S.S.;Lee,Y.H.;Chang,J.S.;Galadari,S.H.;Kim,Y.S.;Ryu,S.H.;Suh,P.G. https://doi.org/10.1046/j.1471-4159.1998.71010178.x
  50. Exp.Hematol. v.30 Activation of phosphatidylinositol 3-kinase is important for erythropoietin-induced erythropoiesis from CD34(+) hematopoietic progenitor cells. Myklebust,J.H.;Blomhoff,H.K.;Rusten,L.S.;Stokke,T.;Smeland,E.B. https://doi.org/10.1016/S0301-472X(02)00868-8
  51. FASEB J. v.14 Proteolytic cleavage of phospholipase C-gamma1 during apoptosis in Molt-4 cells. Bae,S.S.;Perry,D.K.;Oh,Y.S.;Choi,J.H.;Galadari,S.H.;Ghayur,T.;Ryu,S.H.;Hannun,Y.A.;Suh,P.G. https://doi.org/10.1096/fasebj.14.9.1083
  52. Biochim.Biophys.Acta. v.1584 The nuclear phosphoinositide 3-kinase/AKT pathway:a new second messenger system. Neri,L.M.;Borgatti,P.;Capitani,S.;Martelli,A.M. https://doi.org/10.1016/S1388-1981(02)00300-1
  53. Anticancer Res. v.20 Overexpression of Akt/AKT can modulate chemotherapy-induced apoptosis. Page,C.;Lin,H.J.;Jin,Y.;Castle,V.P.;Nunez,G.;Huang,M.;Lin,J.
  54. Cancer Res. v.60 Prevention of phosphatidaylinositol 3-kinase-Akt survival signaling pathway during topotecan-induced apoptosis. Nakashio,A.;Fujita,N.;Rokudai,S.;Sato,S.;Tsuruo,T.
  55. J.Cell.Biol. v.151 Akt regulates cell survival and apoptosis at a postmitochondrial level. Zhou,H.;Li,X.M.;Meinkoth,J.;Pittman,R.N. https://doi.org/10.1083/jcb.151.3.483
  56. Cell v.91 Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Datta,S.R.;Dudek.H.;Tao,X.;Masters,S.;Fu,H.;Gotoh,Y.;Greenberg,M.E. https://doi.org/10.1016/S0092-8674(00)80405-5
  57. Cancer Res. v.61 XIAP regulates Akt activity and caspase-3-dependent cleavage during cisplatin-induced apoptosis in human overian epithelial cancer cells. Asselin,E.;Mills,G.B.;Tsang,B.K.
  58. Int.J.Cancer v.94 Is COX-2 inhibition a panacea for cancer prevention? Vainio,H. https://doi.org/10.1002/ijc.1518
  59. J.Cancer Res.Clin.Oncol. v.127 Cyclooxygenase-2:a novel target for cancer chemotherapy? Dempke,W.;Rie,C.;Grothey,A.;Schmoll,H.J. https://doi.org/10.1007/s004320000225
  60. Lab.Invest. v.79 Cyclooxygenase inhibitors suppress angiogenesis and reduce tumor growth in vivo. Sawaoka,H.;Tsuji,S.;Tsujii,M.;Gunawan,E.S.;Sasaki,Y.;Kawano,S.;Hori,M.
  61. J.Clin.Invest. v.107 Therapeutic potential of inhibition of the NF-κ B pathway in the treatment of inflammation and cancer. Yamamoto,Y.;Gaynor,R.B. https://doi.org/10.1172/JCI11914