• Title/Summary/Keyword: Plate Convergence

Search Result 383, Processing Time 0.024 seconds

Recognition of Car License Plates Using Fuzzy Clustering Algorithm

  • Cho, Jae-Hyun;Lee, Jong-Hee
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.4
    • /
    • pp.444-447
    • /
    • 2008
  • In this paper, we proposed the recognition system of car license plates to mitigate traffic problems. The processing sequence of the proposed algorithm is as follows. At first, a license plate segment is extracted from an acquired car image using morphological features and color information, and noises are eliminated from the extracted license plate segment using line scan algorithm and Grassfire algorithm, and then individual codes are extracted from the license plate segment using edge tracking algorithm. Finally the extracted individual codes are recognized by an FCM algorithm. In order to evaluate performance of segment extraction and code recognition of the proposed method, we used 100 car images for experiment. In the results, we could verify the proposed method is more effective and recognition performance is improved in comparison with conventional car license plate recognition methods.

Three dimensional finite elements modeling of FGM plate bending using UMAT

  • Messaoudi, Khalid;Boukhalfa, Abdelkrim;Beldjelili, Youcef
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.487-494
    • /
    • 2018
  • The purpose of the present paper is to study the bending and free vibration of Functionally Graded Material (FGM) plate using user-defined material subroutine on the finite element software ABAQUS. The FGM plate is simply supported and subjected to sinusoidal and uniform load. The Poisson's ratio is kept constant. The results obtained compared to those available in the literature show the convergence, the exactitude and the efficiency of the method used with various power index of the materials.

Study on Continuously Variable System Using to Centrifugal Belt Pulley

  • Do, Hyung-jin;Youm, Kwang-Wook
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.10-18
    • /
    • 2020
  • In the case of a belt-pulley type CVT that transmits a driving force by using a variable pulley and a metal belt, slippage occurs due to transmission of power by using a belt, which results in a decrease in efficiency. Therefore, in this study, the rails were machined on the plate surface of the pulley to reduce the friction and slip between the belt and the pulley while applying the characteristics of the CVT. As the plate is rotated by the shape of the rail, a centrifugal belt pulley type continuously variable transmission system which shifts while varying the radius of rotation of the belt that transmits power is studied. Accordingly, the structure of the pulley was designed and the centrifugal belt pulley type continuously variable transmission was Manufactured. In addition, to verify the suitability of the manufactured transmission, the power transmission efficiency was monitored by establishing an interface with the controller. The structural analysis of the plate proved the suitability of the centrifugal belt pulley type continuously variable transmission.

Free vibration analysis of rotating cantilever plates using the p-version of the finite element method

  • Hamza-Cherif, Sidi Mohammed
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.151-167
    • /
    • 2006
  • A p-version of the finite element method in conjunction with the modeling dynamic method using the arc-length stretch deformation is considered to determine the bending natural frequencies of a cantilever flexible plate mounted on the periphery of a rotating hub. The plate Fourier p-element is used to set up the linear equations of motion. The transverse displacements are formulated in terms of cubic polynomials functions used generally in FEM plus a variable number of trigonometric shapes functions representing the internals DOF for the plate element. Trigonometric enriched stiffness, mass and centrifugal stiffness matrices are derived using symbolic computation. The convergence properties of the rotating plate Fourier p-element proposed and the results are in good agreement with the work of other investigators. From the results of the computation, the influences of rotating speed, aspect ratio, Poisson's ratio and the hub radius on the natural frequencies are investigated.

Free vibration of functionally graded thin elliptic plates with various edge supports

  • Pradhan, K.K.;Chakraverty, S.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.337-354
    • /
    • 2015
  • In this article, free vibration of functionally graded (FG) elliptic plates subjected to various classical boundary conditions has been investigated. Literature review reveals no study has been performed based on functionally graded elliptic plates till date. The mechanical kinematic relations are considered based on classical plate theory. Rayleigh-Ritz technique is used to obtain the generalized eigenvalue problem. The material properties of the FG plate are assumed to vary along thickness direction of the constituents according to power-law form. Trial functions denoting the displacement components are expressed in simple algebraic polynomial forms which can handle any edge support. The objective is to study the effect of geometric configurations and gradation of constituent volume fractions on the natural frequencies. New results for frequency parameters are incorporated after performing a test of convergence. A comparison study is carried out with existing literature for validation in special cases. Three-dimensional mode shapes for circular and elliptic FG plates are also presented with various boundary conditions at the edges.

A Study on the Flow Characteristics of a Swash-Plate Piston-Pump Inlet (사판식 피스톤 펌프 흡입구의 유동 특성에 관한 연구)

  • Lee, Jeong-Sil;Jun, Cha-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.56-62
    • /
    • 2021
  • In this study, a cavitation occurrence in a piston-pump inlet was investigated by simulating the pressure distribution, according to the inlet shape of a variable-displacement swash-plate piston pump that supplies high-pressure oil to control the hydraulic system of a marine engine. Two types of pump inlets with different shapes were cast into impression models, and the models were reverse-engineered by 3D scanning. Then, the hydraulic-pressure distribution was analyzed through finite-element analysis. The results of the analysis confirmed that cavitation occurs more easily in the inlet with a steeper slope during pump operation because the inlet pressure on the valve plate is lower than that of the other pump with a gentler inlet slope.

Optical Phase Properties of Small Numbers of Nanoslits and an Application for Higher-efficiency Fresnel Zone Plates

  • Kim, Hyuntai;Lee, Seung-Yeol
    • Current Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.285-291
    • /
    • 2019
  • We have studied the behavior of light in the intermediate regime between a single nanoslit and an infinite nanoslit array. We first calculated the optical characteristics of a small number of nanoslits using finite element numerical analysis. The phase variance of the proposed nanoslit model shows a gradual phase shift between a single nanoslit and ideal nanoslit array, which stabilizes before the total array length becomes ${\sim}0.5{\lambda}$. Next, we designed a transmission-enhanced Fresnel zone plate by applying the phase characteristics from the small-number nanoslit model. The virtual-point-source method suggests that the proposed Fresnel zone plate with phase-invariant nanoslits achieves 2.34x higher transmission efficiency than a conventional Fresnel zone plate. Our report describes the intermediate behaviors of a nanoslit array, which could also benefit subwavelength metallic structure research of metasurfaces.

Critical thermal buckling analysis of porous FGP sandwich plates under various boundary conditions

  • Abdelhak Zohra;Benferhat Rabia;Hassaine Daouadji Tahar
    • Structural Engineering and Mechanics
    • /
    • v.87 no.1
    • /
    • pp.29-46
    • /
    • 2023
  • Critical thermal buckling of functionally graded porous (FGP) sandwich plates under various types of thermal loading is considered. It is assumed that the mechanical and thermal nonhomogeneous properties of FGP sandwich plate vary smoothly by distribution of power law across the thickness of sandwich plate. In this paper, porosity defects are modeled as stiffness reduction criteria and included in the rule of mixture. The thermal environments are considered as uniform, linear and nonlinear temperature rises. The critical buckling temperature response of FGM sandwich plates has been analyzed under various boundary conditions. By comparing several numerical examples with the reference solutions, the results indicate that the present analysis has good accuracy and rapid convergence. Further, the effects of various parameters like distribution shape of porosity, sandwich combinations, aspect ratio, thickness ratio, boundary conditions on critical buckling temperature of FGP sandwich plate have been studied in this paper.

Development and Evaluation of Broadband Piezoelectric Harvesters using a Cantilever-Type Module (캔틸레버형 모듈을 이용한 광대역 압전 하베스터 개발 및 평가)

  • Park, Buem-Keun;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.261-265
    • /
    • 2020
  • In cantilever type piezoelectric energy harvester, the amount of power generation decreases rapidly when outside a certain frequency. The thickness and weight of the cantilever metal plate were modified to develop cantilevers that could produce high power over a wide frequency range. The thicker the cantilever, the higher the power in the higher frequency range. As the weight of the mass increased, the cantilever tended to generate higher power, and the frequency band decreased. A 0.6 mm metal plate cantilever that had a mass of 3.3 g generated power that exceeded 3 mW within the 91-102 Hz range, with average and output values of 9.484 mW and 20.748 mW, respectively, at 99 Hz.

The Fundamental Study on the Behavior of Deck Slab Reinforced Basalt Fiber (Basalt 콘크리트 섬유보강 상판의 거동에 관한 기초적 연구)

  • Seo, Seung-Tag
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Basalt originates from volcanic magma and flood volcanoes, a very hot fluid or semifluid material under the earth's crust, solidified in the open air. Basalt is a common term used for a variety of volcanic rocks, which are gray, dark in colour, formed from the molten lava after solidification. Recently, attention has been devoted to continuous basalt fibers (CBF) whose primary advantage consists in their low cost, good resistance to acids and solvents, and good thermal stability. In order to investigate reinforcement effect, this paper did FEM analysis with shell element. The result were as follows; BCF deck plate did elastic behavior to 450 kN, reinforcement effect of basalt fiber (BF) was less. But BCF's perpendicular deflection occurred little about 23 mm comparing with RC deck plate in load 627 kN. Stiffness was very improved by basalt fiber reinforcement.