Browse > Article
http://dx.doi.org/10.46670/JSST.2020.29.4.261

Development and Evaluation of Broadband Piezoelectric Harvesters using a Cantilever-Type Module  

Park, Buem-Keun (Electronic Convergence Division, Korea Institute of Ceramic Engineering & Technology)
Paik, Jong-Hoo (Electronic Convergence Division, Korea Institute of Ceramic Engineering & Technology)
Publication Information
Journal of Sensor Science and Technology / v.29, no.4, 2020 , pp. 261-265 More about this Journal
Abstract
In cantilever type piezoelectric energy harvester, the amount of power generation decreases rapidly when outside a certain frequency. The thickness and weight of the cantilever metal plate were modified to develop cantilevers that could produce high power over a wide frequency range. The thicker the cantilever, the higher the power in the higher frequency range. As the weight of the mass increased, the cantilever tended to generate higher power, and the frequency band decreased. A 0.6 mm metal plate cantilever that had a mass of 3.3 g generated power that exceeded 3 mW within the 91-102 Hz range, with average and output values of 9.484 mW and 20.748 mW, respectively, at 99 Hz.
Keywords
Piezoelectric transducer; Energy harvesting; Broadband; High power; Cantilever;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 W. Wu, Y. Chen, B. Lee, J. He, and Y. Peng, "Tunable resonant frequency power harvesting devices", Proc. SPIE, Vol 6169, 61690A(1)-61690A(8), 2006.
2 E. S. Leland and P. K. Wright, "Resonance tuning of piezoelectricvibration energy scavenging generators using compressiveaxial preload", Smart Mater. Struct., Vol. 15, pp. 1413-1420, 2006.   DOI
3 Y. Hu, H. Xue, H. Hu, "A piezoelectric power harvester withadjustable frequency through axial preloads", Smart Mater. Struct., Vol. 16, pp. 1961-1966, 2007.   DOI
4 C. Eichhorn, F. Goldschmidtboeing, and P. Woias, "A frequency tunable piezoelectric energy converter based on a cantilever beam", Proc. PowerMEMS, Vol. 9, No. 12, pp. 309-312, 2008.
5 T. Reissman, E. M. Wolff, and E. Garcia, "Piezoelectric resonanceshifting using tunable nonlinear stiffness", Proc. SPIE, Vol. 7288, 72880G(1)-72880G(12), 2009.
6 S. Roundy, P. K. Wright, and J. Rabaey, "A study of low level vibrations as a power source for wireless sensor nodes", Comput. Commun., Vol. 26, No. 11, pp. 1131-1144, 2003.   DOI
7 C. I. Kim, Y. H. Jeong, W. I. Park, J. H. Cho, Y. H. Jang, B. J. Choi, S. S. Park, and J. H. Paik, "Development and Evaluation of Rack Type Piezoelectric Harvester for Smart-Street Lamps Control", J. Korean Inst. Electr. Electron. Mater. Eng., Vol. 29, No. 11, pp. 696-701, 2016.   DOI
8 C. I. Kim, Y. H. Jeong, J. S. Yun, Y. W. Hong, Y. H. Jang, B. J. Choi, S. S. Park, C. M. Son, D. K. Seo, and J. H. Paik,"Development and Evaluation of Self-powered Energy Harvester in Wireless Sensor Node for Diagnosis of Electric Power System", J. Sens. Sci. Technol., Vol. 25, No. 5, pp. 371-376, 2016.   DOI
9 M. Ferrari,V. Ferrari, M. Guizzetti, B. Ando, S. Baglio,and C. Trigona, "Improved energy harvesting from wideband-vibrations by nonlinear piezoelectric converters", Sens. Actuators A, Vol. 162, No. 2, pp. 425-431, 2010.   DOI
10 I.-H. Kim, H.-J. Jung, B. M. Lee, and S.-J. Jang, "Broadband energyharvesting using a two degreeof-freedom vibrating body", Appl. Phys. Lett., Vol. 98, pp. 214102(1)-214102(3), 2011.   DOI
11 A. Hajati and S.-G. Kim, "Ultra-wide bandwidth piezoelectricenergy harvesting", Appl. Phys. Lett., Vol. 99, pp. 083105(1)-083105(3), 2011.   DOI
12 P. Pillatsch, L. M. Miller, E. Halvorsen, P. K. Wright, E. M. Yeatman, and A. S. Holmes, "Self-tuning behavior of aclamped-clamped beam with sliding proof mass for broadband energy harvesting", J. Phys. Conf. Ser., Vol. 476, pp. 1-5, 2013.
13 N. Aboulfotoh, J. Twiefel, M. Krack, and J. Wallaschek, "Experimental study on performance enhancement of apiezoelectric vibration energy harvester by applying sel fresonating behavior", Energy Harvest. Syst., Vol. 4, pp. 131-136, 2017.   DOI