• Title/Summary/Keyword: Plasticizer Agent

Search Result 47, Processing Time 0.025 seconds

EFFECTS OF DI(N-BUTYL) PHTHALATE, AN ENDOCRINE DISRUPTOR ON THE IMMUNE SYSTEM OF PREGNANT SD RATS AND THEIR PUPS

  • Juno H. Eom;Chung, Seung-Tae;Park, Jae-Hyun;Lee, Jong-Kwon;Chung, Hyung-Jin;Kwan, Tae-Woo;Kim, Hyung-Soo;Oh, Hae-Young
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.05a
    • /
    • pp.98-98
    • /
    • 2002
  • Di-n-butyl phthalate(DBP) is one of the most commonly used phthalic acid esters(PAEs). It is extensively used as a plasticizer in elastomers and explosives, as a solvent for printing inks and resins and as a textile lubricating agent. It is also present in the formulations of various cosmetic products.(omitted)

  • PDF

Bio-film Composites Composed of Soy Protein Isolate and Silk Fiber: Effect of Concentration of Silk Fiber on Mechanical and Thermal Properties

  • Prabhakar, M.N.;Song, Jung Il
    • Composites Research
    • /
    • v.27 no.5
    • /
    • pp.196-200
    • /
    • 2014
  • A novel, simple and totally recyclable method has been developed for the synthesis of nontoxic, biocompatible and biodegradable bio-composite films from soy protein and silk protein. Bio films are defined as flexible films prepared from biological materials such as protein. These materials have potential application in medical and food as a packaging material. Their use depends on various parameters such as mechanical (strength and modulus), thermal, among others. In this study, prepare and characterization of bio films made from Soy Protein Isolate (SPI) (matrix) and Silk Fiber (SF) (reinforcement) through solution casting method by the addition of plasticizer and crosslinking agent. The obtained SPI and SPI/SF composites were subsequently subjected to evaluate their mechanical and thermal properties by using Universal Testing Machine and Thermal Gravimetric Analyzer respectively. The tensile testing showed significant improvements in strength with increasing amount of SF content and the % elongation at break of the composites of the SPI/SF was lower than that of the matrix. Though the interfacial bonding was moderate, the improvement in tensile strength and modulus was attributed to the higher tensile properties of the silk fiber.

Sulfonated Polystyrene Ionomers Containing 4-Aminobenzoic Acid Studied by a Small-Angle X-Ray Scattering Technique

  • Song, Ju-Myung;Hong, Min-Chul;Kim, Joon-Seop;Jikang Yoo;Yu, Jeong-A;Kim, Whangi
    • Macromolecular Research
    • /
    • v.10 no.6
    • /
    • pp.304-310
    • /
    • 2002
  • In a recent study by the same authors using a DMTA (Dynamic Mechanical Thermal Analyzer), it was found that the 4-aminobenzoic arid (ABA) molecules acted as either a neutralizing agent, or a plasticizer, or a filler, depending on the order of mixing of poly(styrene-co-styrenesulfonic acid) (PSSA), ABA, and NaOH. Subsequent to that study, we here pursued the same topic, i.e., the effect of the addition of CsOH (instead of NaOH) and ABA on the morphology of PSSA, but this time, by using a small-angle X-ray scattering (SAXS) technique. In line with the previous results, the present study with the SAXS technique verified that the order of mixing has a significant effect on the morphology of ionomers. In addition, with the SAXS data and the density values of the ionomers, we attempted to calculate both the number of sulfonate ionic groups per multiplet and the size of the multiplet of the ionomer.

Characterization of jute fibre reinforced pine rosin modified soy protein isolate green composites

  • Sakhare, Karishma M.;Borkar, Shashikant P.
    • Advances in materials Research
    • /
    • v.11 no.3
    • /
    • pp.191-209
    • /
    • 2022
  • Very slow degradation of synthetic based polymers has created a severe environmental issue that increased awareness towards research in polymers of biodegradable property. Soy protein isolate (SPI) is a natural biopolymer used as matrix in green composites but it has limitations of low mechanical properties and high water sensitivity. To enhance mechanical properties and reduce water sensitivity of Jute-SPI composites, SPI was modified with pine rosin which is also a natural cross-linking agent. 30% glycerol on the weight basis of a matrix was used as a plasticizer. The fibre volume fraction was kept constant at 0.2 whereas the pine rosin in SPI ranged from 5% to 30% of the matrix. The effects of pine rosin on mechanical, thermal, water sensitivity and surface morphology have been characterized using various techniques. The mechanical properties and water absorbency were found to be optimum for 15% pine rosin in Jute-SPI composite. Therefore, Jute-SPI composite without pine rosin and with 15% pine rosin were chosen for investigation through characterization by Fourier transforms infrared spectroscopy (FTIR), Thermo-gravimetric analysis (TGA), X-Ray diffraction (XRD) and Scanning electron microscope (SEM). The surface morphology of the composite was influenced by pine rosin which is shown in the SEM image. TGA measurement showed that the thermal properties improved due to the addition of pine rosin. Antimicrobial test showed antimicrobial property in the composite occurring 15% pine rosin. The research paper concludes that the modification of SPI resin with an optimum percentage of pine rosin enhanced mechanical, thermal as well as water-resistant properties of jute fibre reinforced composites.

Development of Oxo-biodegradable Transparent Bio Films Using Biomass and Biodegradable Catalyst (바이오매스 및 생분해 촉매제를 이용한 산화생분해 투명 바이오 필름 개발)

  • You, Young-Sun;Kim, Young-Tae;Park, Dae-Sung;Choi, Sung-Wook
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.133-139
    • /
    • 2017
  • Bio-based plastics containing the biomass content higher than 25 wt% have been considered as environment-friendly materials due to their effects on the reduction in the $CO_2$ emission and petroleum consumption as well as biodegradability after use. In this study, poly vinyl chloride, plant-derived plasticizers, by adding a biodegradable catalyst was observed a change in the biodegradability and physical properties. To produce the oxidative decomposition transparent bio film, which is broken down in the initial percent elongation and physical properties such as tensile strength, it was to test the safety of the product as a food packaging material. Poly vinyl chloride, primary plasticizer, secondary plasticizer, anti fogging agent, the combined stabilizer were mixed in a high speed mixer, then extruded using an extrusion molding machine, after cooling, winding, to produce a oxidative decomposition transparent bio film and the control film, with a thickness of $12{\mu}m$ through winder role. Mechanical properties tensile strength, elongation, and the maximum load elongation and biodegradation test. Transparent bio film produced by biodegradation catalyst is compared with the control film. Tensile strength and elongation of films were found to be no significant difference. Further, as a result of the biodegradation test for 45 days based on the ASTM D6954-04 method, biodegrability of film is 61.4%.

Preparation of Polymer Gel Electrolyte for EDLCs using P(VdF-co-HFP)/PVP (P(VdF-co-HFP)/PVP를 이용한 EDLC용 고분자 겔 전해질의 제조)

  • Jung, Hyun-Chul;Jang, In-Young;Kang, An-Soo
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.243-249
    • /
    • 2006
  • Porous polymer gel electrolytes (PGEs) based on poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) as a polymer matrix and polyvinylpyrolidone (PVP) as a pore-forming agent were prepared and electrochemical properties were investigated for an electric double layer capacitor (EDLC) in order to increase a permeability of an electrolyte into the PGE. Propylene carbonate (PC) and ethylene carbonate (EC) as plasticizers, and tetraethylammonium tetrafluoroborate ($TEABF_4$) as a supporting salt for the PGE were used. EDLC unit cells were assembled with the PGE and electrode comprising BP-20 and MSP-20 as activated carbon powders, Super P as a conducting agent, and P(VdF-co-HFP)/PVP as a mixed binder. Ion conductivity of PGEs increased with an increased PVP content and was the best at 7 wt% PVP, whereas electrochemical characteristics such as AC-ESR of unit cell were better in 3 wt%. And electrochemical characteristics of the unit cell with PGE were the best at a 33 : 33 weight ratio of PC to EC. Specific capacitance of a mixed plasticizer system of PE and EC was higher than that of pure PC. Ion conductivity of PGEs with a film thickness of $20{\mu}m$ was higher, but electrochemical characteristics of unit cells were higher for a $50{\mu}m$ membrane thickness. Also, the unit cell has shown the highest capacitance of 31.41 F/g and more stable electrochemical performance when PGE and electrode were hot pressed. Consequently, the optimum composition ratio of PGE for EDLCs was 23 : 66 : 11 wt% such as P(VdF-co-HFP) : PVP = 20 : 3 wt% and PC : EC = 44 : 22 wt%. In this case, $3.17{\times}10^{-3}S/cm$ of ion conductivity was achieved at the $50{\mu}m$ thickness of PGE for EDLCs. And the electrochemical characteristics of unit cells were $2.69{\Omega}$ of DC-ESR, 28 F/g of specific capacitance, and 100% of coulombic efficiency.

Degradation Behavior of PVC Film in Aqueous Solution at Elevated Temperatures (高溫 水溶液 중에서 PVC필름의 分解擧動)

  • Shin, Shun-Myung;Kim, Jong-Hwa;Lee, Soo
    • Resources Recycling
    • /
    • v.10 no.1
    • /
    • pp.25-31
    • /
    • 2001
  • The heat treatment of PVC film containing PVC 65ft, DOP (Dioctyl Phthalate) 32% as plasticizer, Ca-Zn stearates and sur-face agent was performed under several conditions to study the dehydrochlorination of PVC and char production. In the case of $H_2$ $SO_4$, the dehydrochlorination was ca.100% at $250^{\circ}C$ for 3h. The char involving the smaller pores was produced with hydro-thermal treatment. The pore size became small with increasing the treatment time and temperature. In the case of treatment with $Ca(OH)_2$, the sizes of pores produced in char were about sever ~10 $\mu\textrm{m}$ at$ 225^{\circ}C$ for 12h. In the case of $_2$$SO_4$, the size of pores were about 1 $\mu\textrm{m}$ in 5M $_H2$$SO_4$for 12h.

  • PDF

Developmental Immunotoxicity in SD Rat Pups Exposed by Di(n-butyl) Phthalate through Pre and Postnatal (SD Rat에 있어서 출생 전.후에 걸친 Di(n-butyl) Phthalate 노출에 의한 발생면역독성)

  • 엄준호;정승태;이종권;박재현;권태우;김지영;오혜영;김형수
    • Toxicological Research
    • /
    • v.18 no.4
    • /
    • pp.401-409
    • /
    • 2002
  • Phthalate esters have possible effects on the endocrine system. Di-n-butyl phthalate (DBP) is one of the most commonly wed phthalic acid esters (PAEs). It is extensively wed as a plasticizer in elastomers, as a solvent for printing inks and resins, and as a textile lubricating agent. It is also present in the formulations of various cosmetic products. DBP has been identified as a reproductive toxicant in several animal species and also know as a endocrine disruptor. The objective of this study was to investigate the effect of DBP on developmental immune Junction wing rat pups as experimental animals. Timed-bred pregnant SD rats were orally dosed with 0, 250, 500, or 750 mg DBP/kg body weight once a day from gestational day (GD) 5 to 18 and postpartum day (PD) 3 to 18. On PD22, the dams and their pups were euthanized and examined for alteration in parameters associated to immune function. The results showed no significant changes in body weight, thymus weight, thymus and spleen cellularities, the polyclonal activation respones of splenocyte with ConA and LPS, and also the distribution of arterial blood cells and thymocyto subsets in both rat dam and pups. However DBP exposure on rat dam resulted in increases of liver weights of dam and their pups except 750 mg DBP/kg, and body and spleen weights in pups except 750 mg DBP/kg. On the other hands, distribution rates of CD8+ T cells at 500 mg DBP/kg and B cells at 750 mg DBP/kg among splenocyte subsets were significantly increased in rat pups, unlike dams. Reasons of these distribution alterations of CD8+ T cells and B cells in rat pups are under study.

Evaluation of Engineering Properties in Early-Age Concrete with TDFA (TDFA를 혼입한 초기재령 콘크리트의 공학적 특성 평가)

  • Park, Jae-Sung;Park, Sang-Min;Kim, Hyeok-Jung;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.1-8
    • /
    • 2016
  • This paper presents an evaluation of engineering properties in TDFA(Tire Derived Fuel Ash)- based concrete in early age. Concrete containing 0.5 of w/b(water to binder) ratio and 20% of FA(Fly Ash) replacement ratio are prepared, and FA content are replaced with TDFA from 3% to 12% for evaluating the effect of TDFA on fresh and hardened concrete properties. With higher than 6% of TDFA replacement ratio, workability is significantly worsened but it is improved with more SP(Super plasticizer) and AE(Air Entrainer) agent. Concrete with 6~12% of TDFA shows reasonable strength development and better resistance to carbonation and chloride attack in spite of early-aged condition. However concrete with 6% TDFA shows poor resistance to freezing and thawing action due to insufficient air content. If air content and workability are obtained, replacement of TDFA to 12% can be used for concrete with FA.

Effect of NBR Component on Adhesion Behaviors between NBR and Metal Joints Using Phenol Adhesive (페놀 수지를 이용한 NBR/냉연강판 접착계에 미치는 NBR 조성의 효과)

  • Lee, Dong-Won;Park, Hae-Youn;Yu, Young-Jae;Kang, Dong-Gug;Seo, Kwan-Ho
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • The adhesion behaviors and processability of NBR as a sealing material were investigated. In order to find the optimum formulation, the adhesive properties and processability were observed as the change of the contents of acrylonitrile (ACN) in NBR. Effects of Mooney viscosity, filler, plasticizer and crosslinking agent on the adhesion behaviors were also studied. The contents of ACN in NBR have great effects on adhesion behaviors and processability in NBR sealing. To know the optimum condition of roll mixing, degree of dispersion was investigated. It was confirmed that degree of dispersion was influenced by various factors such as mixing order, time, and temperature. The crosslinking system was studied as the observation of sulfur system, peroxide system, crosslinking density, and structure. From the variation of the dry condition and hexamine contents, the relation between adhesive and NBR was studied. These results show the adhesion properties and processability are dependent on the contents of ACN and crosslinking system.