DOI QR코드

DOI QR Code

Evaluation of Engineering Properties in Early-Age Concrete with TDFA

TDFA를 혼입한 초기재령 콘크리트의 공학적 특성 평가

  • 박재성 (한남대학교 건설시스템 공학과) ;
  • 박상민 (에스엠아이(주)) ;
  • 김혁중 (금호석유화학 중앙연구소) ;
  • 권성준 (한남대학교 건설시스템 공학과)
  • Received : 2016.03.02
  • Accepted : 2016.05.19
  • Published : 2016.09.01

Abstract

This paper presents an evaluation of engineering properties in TDFA(Tire Derived Fuel Ash)- based concrete in early age. Concrete containing 0.5 of w/b(water to binder) ratio and 20% of FA(Fly Ash) replacement ratio are prepared, and FA content are replaced with TDFA from 3% to 12% for evaluating the effect of TDFA on fresh and hardened concrete properties. With higher than 6% of TDFA replacement ratio, workability is significantly worsened but it is improved with more SP(Super plasticizer) and AE(Air Entrainer) agent. Concrete with 6~12% of TDFA shows reasonable strength development and better resistance to carbonation and chloride attack in spite of early-aged condition. However concrete with 6% TDFA shows poor resistance to freezing and thawing action due to insufficient air content. If air content and workability are obtained, replacement of TDFA to 12% can be used for concrete with FA.

본 연구에서는 산업부산물인 TDFA를 혼입한 콘크리트에 대하여 초기재령의 공학적 특성을 분석하였다. 물-결합재비 0.5, FA 치환율 20%인 콘크리트를 대상으로 TDFA를 3~12%치환하여 경화 전 및 경화 후의 특성을 분석하였다. TDFA 혼입율 6% 이후의 배합에서는 작업성이 현저하게 감소하였고 공기량 확보가 어려웠으며, 이로 인해 감수제 및 공기연행제를 추가하여 작업성을 개선시켰다. TDFA 혼입율 6~12%까지는 콘크리트의 강도에 큰 영향은 없었으며, 탄산화저항성 및 염해저항성에서는 FA 20% 치환 배합보다 우수한 성능을 나타내었다. 그러나 공기량이 부족한 TDFA 혼입율 6%배합에서는 동결융해 저항성이 크게 감소하였다. 공기량 및 작업성이 확보된다면 FA를 12%수준까지 TDFA로 치환해도 공학적인 성능을 확보할 수 있을 것으로 판단된다.

Keywords

References

  1. Al-Akhras, N. M., and Smadi, M. M. (2004), Properties of Tire Rubber Ash Mortar, Cement and Concrete Composites, 26(7), 821-826. https://doi.org/10.1016/j.cemconcomp.2004.01.004
  2. Broomfield, J. P. (1997), Corrosion of Steel in Concrete: Understanding, Investigation and Repair, London: E&FN, 1-15.
  3. Cho, M. S., Song, Y. C., Ryu, G. S., Koh, K. T., Kim, S. W., and Lee, J. H. (2002), Durability Evaluation of Concrete using Fly Ash, Journal of Korea concrete institute, 755-760.
  4. Jung, S. H., and Kwon, S. J. (2013), Engineering Properties of Cement Mortar with Pond Ash in South Korea as Construction Materials: from Waste to Concrete, Central European Journal of Engineering, 3(3), 522-533.
  5. Kim, D. B., and Lee, K. J. (2014), A Study on the Concrete Durability by Fly Ash Replacement Ratio, Journal of the Korean Society of Disaster Information, 10(4), 566-571. https://doi.org/10.15683/kosdi.2014.10.4.566
  6. Kobayashi, K., and Uno, Y. (1990), Mechanism of Carbonation of Concrete, Concrete Library of JSCE, 16(12), 139-151.
  7. Koh, K. T., Kim, D. K., Kim, S. W., Cho, M. S., and Song, Y. C. (2001), A Compound Deterioration Assessment of Concrete Subjected to Freezing and Thawing and Chloride Attack, Journal of the Korea Concrete Institute, 13(4), 397-405. https://doi.org/10.22636/JKCI.2001.13.4.397
  8. KS F 2402 (2007), Method of test for slump of concrete, KSSN, 1-12.
  9. KS F 2405 (2010), Standard test method for compressive strength of concrete, KSSN, 1-3.
  10. KS F 2408 (2015), Standard test method for flexural strength of concrete, KSSN, 1-3.
  11. KS F 2421 (2011), Standard test method for air content of fresh concrete by the pressure method, KSSN, 1-7.
  12. KS F 2423 (2011), Standard test method for splitting tensile strength of concrete, KSSN, 1-3.
  13. KS F 2456 (2013), Standard test method for resistence of cencrete to rapid freezing and thawing, KSSN, 1-10.
  14. KS F 2584 (2105), Standard test method for accelerated carbonation of concrete, KSSN, 1-4.
  15. KS F 2594 (2015), Standard test method for slump flow of fresh cencrete, KSSN, 1-3.
  16. KS L 5108 (2012), Testing method for setting time of hydraulic cement ny vicat needle, KSSN, 1-6.
  17. Kwon, S. J., and Song, H. W. (2010), Analysis of Carbonation Behavior in Concrete using Neural Network Algorithm and Carbonation Modeling, Cement and Concrete Research, 40(1), 119-127. https://doi.org/10.1016/j.cemconres.2009.08.022
  18. Kwon, S. J., Na, U. J., Park, S. S., and Jung, S. H. (2009), Service Life Prediction of Concrete Wharves with Early-Aged Crack: Probabilistic Approach for Chloride Diffusion, Structural Safety, 31(1), 75-83. https://doi.org/10.1016/j.strusafe.2008.03.004
  19. Lee, B. C., Jung, S. H., Kim, J. H., and Kwon, S. J. (2011), Evaluation for Properties of Domestic Pond Ash Aggregate and Durability Performance in Pond Ash Concrete, Journal of the Korea Concrete Institute, 23(3), 311-320. https://doi.org/10.4334/JKCI.2011.23.3.311
  20. Maekawa, K., Ishida, T., and Kishi, T. (2003), Multi-Scale Modeling of Concrete Performance Integrated Material and Structural Mechanics, Journal of Advanced Concrete Technology, 1(2), 91-126. https://doi.org/10.3151/jact.1.91
  21. Neville, A. M. (1995), Properties of concrete: 4th ed, England: Longman Group, 23-58.
  22. Ramznianpour, A. A., Mahdikhani, M., and Ahmadibeni, Gh. (2009), The Effect of Rice Husk Ash on Mechanical Properties and Durability of Sustainable Concretes, International Journal of Civil Engineering, 7(2), 83-91.
  23. Rukzon, S., Chindaprasirt, P., and Mahachai, R. (2009), Effect of Grinding on Chemical and Physical Properties of Rice Husk Ash, International Journal of Minerals, Metallurgy and Materials, 16(2), 242-247. https://doi.org/10.1016/S1674-4799(09)60041-8
  24. Saraswathy, V., Muralidharan, S., and Srinivasan, S. (2003), Electrochemical Studies on the Corrosion Performance of Activated Fly Ash Blended Cements, Materials Engineering, 14(3), 261-284.
  25. Sarja, A., and Vesikari, E. (1996), Durability Design of Concrete Structures : Report of RILEM Technical Committee 130-CSL, London : E&FN Spon, 28-52.
  26. Song, H. W., Kwon, S. J., Byun, K. J., and Park, C. K. (2005), A Study on Analytical Technique of Chloride Diffusion Considering Characteristics of Mixture Design for High Performance Concrete using Mineral Admixture, Journal of the Korean Society of Civil Engineers, 25(1A), 213-223.
  27. Tang, L. (1996), Electrically Accelerated Methods for Determining Chloride Diffusivity in Concrete-Current Development, Magazine of Concrete Research, 48(176), 173-179. https://doi.org/10.1680/macr.1996.48.176.173
  28. Thomas, M. D. A., and Bamforth, P. B. (1999), Modeling Chloride Diffusion in Concrete: Effect of Fly Ash and Slag, Cement and Concrete Research, 29(4), 487-495. https://doi.org/10.1016/S0008-8846(98)00192-6
  29. Yoo, S. W., Koh, K. T., Kwon, S. J., and Park, S. G. (2013), Analysis Technique for Flexural Behavior in RC Beam Considering Autogenous Shrinkage Effect, Construction and Building Materials, 47, 560-568. https://doi.org/10.1016/j.conbuildmat.2013.05.061

Cited by

  1. Durability performance evaluation of concrete containing TDFA (Tire Derived Fuel Ash) vol.133, 2017, https://doi.org/10.1016/j.conbuildmat.2016.12.070