DOI QR코드

DOI QR Code

Development of Oxo-biodegradable Transparent Bio Films Using Biomass and Biodegradable Catalyst

바이오매스 및 생분해 촉매제를 이용한 산화생분해 투명 바이오 필름 개발

  • You, Young-Sun (Division of Biotechnology, The Catholic University of Korea) ;
  • Kim, Young-Tae (Powerwrap Co. Ltd.) ;
  • Park, Dae-Sung (Division of Green Technology Convergence, The Konkuk University of Korea) ;
  • Choi, Sung-Wook (Division of Biotechnology, The Catholic University of Korea)
  • 유영선 (가톨릭대학교 생명공학전공) ;
  • 김영태 ((주)파워랩) ;
  • 박대성 (건국대학교 녹색기술융합전공) ;
  • 최성욱 (가톨릭대학교 생명공학전공)
  • Received : 2016.11.08
  • Accepted : 2016.12.06
  • Published : 2017.06.30

Abstract

Bio-based plastics containing the biomass content higher than 25 wt% have been considered as environment-friendly materials due to their effects on the reduction in the $CO_2$ emission and petroleum consumption as well as biodegradability after use. In this study, poly vinyl chloride, plant-derived plasticizers, by adding a biodegradable catalyst was observed a change in the biodegradability and physical properties. To produce the oxidative decomposition transparent bio film, which is broken down in the initial percent elongation and physical properties such as tensile strength, it was to test the safety of the product as a food packaging material. Poly vinyl chloride, primary plasticizer, secondary plasticizer, anti fogging agent, the combined stabilizer were mixed in a high speed mixer, then extruded using an extrusion molding machine, after cooling, winding, to produce a oxidative decomposition transparent bio film and the control film, with a thickness of $12{\mu}m$ through winder role. Mechanical properties tensile strength, elongation, and the maximum load elongation and biodegradation test. Transparent bio film produced by biodegradation catalyst is compared with the control film. Tensile strength and elongation of films were found to be no significant difference. Further, as a result of the biodegradation test for 45 days based on the ASTM D6954-04 method, biodegrability of film is 61.4%.

식물로부터 유래하는 바이오매스를 25% 이상 함유하는 바이오 베이스 플라스틱은 탄소배출을 억제하는 효과가 있고, 한정된 자원인 석유의 소비량을 줄일 수 있으며, 산화생분해 첨가제를 추가 적용하면 폐기 후에는 미생물에 의해 생분해되기 때문에 친환경적인 소재로 최근 연구가 활발하다. 본 연구에서는 염화비닐수지에 식물체 유래 가소제, 생분해 촉매제를 첨가하여 생분해성 및 물성변화등을 관찰하였다. 또한 초기 신장율과 인장강도 등의 물성이 우수한 자연에서 분해되는 산화 생분해 투명 바이오 필름을 제조하여 식품포장재로서의 제품 안전성을 시험하였다. 염화비닐 수지와 1차 가소제, 2차 가소제, 방담제, 안정제를 비율에 맞게 투입한 다음, 고속혼합기에서 혼합한 후, 압출성형기를 이용하여 압출한 뒤 냉각 와인더 롤을 통해 두께 $12{\mu}m$의 대조구와 산화생분해 투명 바이오 필름을 제조하였다. 기계적 물성으로 인장강도, 연신율 및 최대하중연신율을 측정하였으며, 생분해 실험을 실시하였다. 식물체 유래 가소제, 생분해 촉매제로 제조된 투명 바이오 필름은 대조구 대비 인장강도 및 연신율이 큰 차이가 없는 것으로 나타났다. 또한 ASTM D 6954-04 방법에 따라 45일간 생분해 테스트를 한 결과 표준물질인 셀룰로오스 분말 대비 61.4%의 생분해를 나타내었다.

Keywords

References

  1. Guillet, J. E., "Polymers and Ecological Problems," Baum, B., and White, R. A. (eds.), Plenum Press, New York, 45-60 (1973).
  2. Brown, D. T., "Plastic Waste Management," Mustafa, N. (ed.) Marcel Dekker Inc., New York, 1-35 (1993).
  3. Garcia, C., Hernandes, T., and Costa, F., "Comparison of Humic Acids Derived from City Refuse with More Developed Humic Acids," Soil Sci. Plant Nutr., 38(2), 339-346 (1992). https://doi.org/10.1080/00380768.1992.10416498
  4. Huag, J. H., Shetty, A. S., and Wang, M. S., "Biodegradable Plastics, A Review," Adv. In Polym. Technol., 10(1), 23-30 (1990). https://doi.org/10.1002/adv.1990.060100103
  5. Bloembergen, S., David, J., Geyer, D., Gustafson, A., Snook, J., and Narayan, R., "Biodegradation and Composting Studies of Polymeric Materials. In: Biodegradable Plastics and Polymers," Doi, Y., and Fukuda, K. (eds.)., Osaka, 601-609 (1993).
  6. You, Y. S., Oh, Y. S., Hong, S. H., and Choi, S. W., "International Trends in Development, Commercialization and Market of Bio-Plastics," Clean Technol., 21(3), 141-152 (2015). https://doi.org/10.7464/ksct.2015.21.3.141
  7. Biz Service Center for Global Environmental Regulation (COMPASS) Analysis Report No BSC Report 130-14-003 (2014).
  8. Expert Group Meeting "Environmental Degradable Polymers and Sustainable Development," Sep. 5-6, 2002 ICS-UNIDO - Development of Plastics Manufacturing Industry in Europe, Dr. Ingo Sartorius.
  9. The Freedonia Group, Inc., "World Bio Plastics," Industry Study 2548 (2009).
  10. Lee, S. I., Sur, S. H., Hong, K. M., Shin, Y. S., Jang, S. H., and Shin, B. Y., "A Study on the Properties of Fully Biophotodegradable Composite Film," J. Int. Ind. Technol., 29, 129-134 (2001).
  11. Chung, M. S., Lee, W. H., You, Y. S., Kim, H. Y., and Park, K. M., "Manufacturing Multi-degradable Food Packaging Films and Their Degradability," Korean J. Food Sci. Technol., 35(5), 877-883 (2003).
  12. ASTM D6866-10, "Standard Test Methods for Determining the Biobased Content of Solid, Liquid, and Gaseous Samples Using Radiocarbon Analysis," USA (2010).
  13. ASTM D3039, "Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials," USA (2005).
  14. ASTM D6954-04, "Standard Guide for Exposing and Testing Plastics that Degrade in the Environment by a Combination of Oxidation and Biodegradation," USA (2004).
  15. ASTM D5208-01, "Standard Practice for Fluorescent Ultraviolet (UV) Exposure of Photodegradable Plastics," USA (2001).
  16. KFDA, Food Codes. Korean Food and Drug Administration. Seoul. Korea. 28-60 (2001).
  17. IEC 62321, "Determination of Levels of Six Regulated Substances (Lead, Mercury, Cadmium, Hexavalent Chromium, Polybrominated Biphenyls, Polybrominated Diphenyl Ethers)," (2008).
  18. ASTM D1003, "Standard Test Method for Haze and Luminous Transmittance of Transparent Plastics," USA (2000).