• Title/Summary/Keyword: Plasma etch rate

Search Result 381, Processing Time 0.029 seconds

Improvement of Repeatability during Dielectric Etching by Controlling Upper Electrode Temperature (Capacitively Coupled Plasma Source를 이용한 Etcher의 상부 전극 온도 변화에 따른 Etch 특성 변화 개선)

  • Shin, Han-Soo;Roh, Yong-Han;Lee, Nae-Eung
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.5
    • /
    • pp.322-326
    • /
    • 2011
  • Etch process of silicon dioxide layer by using capacitively coupled plasma (CCP) is currently being used to manufacture semiconductor devices with nano-scale feature size below 50 nm. In typical CCP plasma etcher system, plasmas are generated by applying the RF power on upper electrode and ion bombardment energy is controlled by applying RF power to the bottom electrode with the Si wafer. In this case, however, etch results often drift due to heating of the electrode during etching process. Therefore, controlling the temperature of the upper electrode is required to obtain improvement of etch repeatability. In this work, we report repeatability improvement during the silicon dioxide etching under extreme process conditions with very high RF power and close gap between upper and bottom electrodes. Under this severe etch condition, it is difficult to obtain reproducible oxide etch results due to drifts in etch rate, critical dimension, profile, and selectivity caused by unexpected problems in the upper electrode. It was found that reproducible etch results of silicon dioxide layer could be obtained by controlling temperature of the upper electrode. Methods of controlling the upper electrode and the correlation with etch repeatability will be discussed in detail.

Reduction of reflection from PET (polyethylene terephthalate) film surface by natural plasma etching

  • Oh, Hoon;Song, Yu-Jin;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1419-1424
    • /
    • 2006
  • We could reduce the reflection from PET(polyethylene terephthalate) film surface by natural plasma etching which does not use etch masks. The plasma etched PET film showed lower reflectance and higher transmittance which is resulted by making subwavelength structure(SWS) on the film surface by the plasma etch rate difference between the amorphous and crystalline region in the surface of PET film.

  • PDF

Surface Reaction of Na0.5K0.5NbO3 Thin Films in Inductively Coupled BCl3/Cl2/Ar Plasma (BCl3/Cl2/Ar 플라즈마에서의 Na0.5K0.5NbO3 박막의 표면반응)

  • Kim, Dong-Pyo;Um, Doo-Seung;Kim, Gwan-Ha;Woo, Jong-Chang;Kim, Chang-Il
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.6
    • /
    • pp.269-273
    • /
    • 2008
  • The etch of $(Na_{0.5}K_{0.5})NbO_3$ (NKN) thin film was performed in $BCl_3/Cl_2/Ar$ inductively coupled plasma. It was found that the 1sccm addition $BCl_3$ (5%) into $Cl_2/Ar$ plasma caused a non-monotonic behavior of the NKN etch rate. The maximum etch rate of NKN was 95.3 nm/min at $BCl_3$ (1 sccm)/$Cl_2$ (16 sccm)/Ar (4 sccm), 800 W ICP power, 1 Pa pressure and 400 W bias power. The NKN etch rate shows a monotonic behavior a s the bias power increases. The analysis of the narrow scan spectra of XPS for both a s-deposited and etched NKN films allowed one to assume ion assisted etch mechanism. The most probable reason for the maximum etch rate can be defined as a concurrence of chemical and physical etch pathways.

The Characteristics of Plasma Polymerized Carbon Hardmask Film Prepared by Plasma Deposition Systems with the Variation of Temperature

  • Yang, J.;Ban, W.;Kim, S.;Kim, J.;Park, K.;Hur, G.;Jung, D.;Lee, J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.381.1-381.1
    • /
    • 2014
  • In this study, we investigated the deposition behavior and the etch resistivity of plasma polymerized carbon hardmask (ppCHM) film with the variation of process temperature. The etch resistivity of deposited ppCHM film was analyzed by thickness measurement before and after direct contact reactive ion etching process. The physical and chemical properties of films were characterized on the Fourier transform infrared (FT-IR) spectroscope, Raman spectroscope, stress gauge, and ellipsometry. The deposition behavior of ppCHM process with the variation of temperature was correlated refractive index (n), extinction coefficient (k), intrinsic stress (MPa), and deposition rate (A/s) with the hydrocarbon concentration, graphite (G) and disordered (D) peak by analyzing the Raman and FT-IR spectrum. From this experiment we knew an optimal deposition condition for structure of carbon hardmask with the higher etch selectivity to oxide. It was shown the density of ppCHM film had 1.6~1.9 g/cm3 and its refractive index was 1.8~1.9 at process temperature, $300{\sim}600^{\circ}C$. The etch selectivity of ppCHM film was shown about 1:4~1:8 to undoped siliconoxide (USG) film (etch rate, 1300 A/min).

  • PDF

Surface reaction of $HfO_2$ etched in inductively coupled $BCl_3$ plasma ($BCl_3$ 유도결합 플라즈마를 이용하여 식각된 $HfO_2$ 박막의 표면 반응 연구)

  • Kim, Dong-Pyo;Um, Doo-Seunng;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.477-477
    • /
    • 2008
  • For more than three decades, the gate dielectrics in CMOS devices are $SiO_2$ because of its blocking properties of current in insulated gate FET channels. As the dimensions of feature size have been scaled down (width and the thickness is reduced down to 50 urn and 2 urn or less), gate leakage current is increased and reliability of $SiO_2$ is reduced. Many metal oxides such as $TiO_2$, $Ta_2O_4$, $SrTiO_3$, $Al_2O_3$, $HfO_2$ and $ZrO_2$ have been challenged for memory devices. These materials posses relatively high dielectric constant, but $HfO_2$ and $Al_2O_3$ did not provide sufficient advantages over $SiO_2$ or $Si_3N_4$ because of reaction with Si substrate. Recently, $HfO_2$ have been attracted attention because Hf forms the most stable oxide with the highest heat of formation. In addition, Hf can reduce the native oxide layer by creating $HfO_2$. However, new gate oxide candidates must satisfy a standard CMOS process. In order to fabricate high density memories with small feature size, the plasma etch process should be developed by well understanding and optimizing plasma behaviors. Therefore, it is necessary that the etch behavior of $HfO_2$ and plasma parameters are systematically investigated as functions of process parameters including gas mixing ratio, rf power, pressure and temperature to determine the mechanism of plasma induced damage. However, there is few studies on the the etch mechanism and the surface reactions in $BCl_3$ based plasma to etch $HfO_2$ thin films. In this work, the samples of $HfO_2$ were prepared on Si wafer with using atomic layer deposition. In our previous work, the maximum etch rate of $BCl_3$/Ar were obtained 20% $BCl_3$/ 80% Ar. Over 20% $BCl_3$ addition, the etch rate of $HfO_2$ decreased. The etching rate of $HfO_2$ and selectivity of $HfO_2$ to Si were investigated with using in inductively coupled plasma etching system (ICP) and $BCl_3/Cl_2$/Ar plasma. The change of volume densities of radical and atoms were monitored with using optical emission spectroscopy analysis (OES). The variations of components of etched surfaces for $HfO_2$ was investigated with using x-ray photo electron spectroscopy (XPS). In order to investigate the accumulation of etch by products during etch process, the exposed surface of $HfO_2$ in $BCl_3/Cl_2$/Ar plasma was compared with surface of as-doped $HfO_2$ and all the surfaces of samples were examined with field emission scanning electron microscopy and atomic force microscope (AFM).

  • PDF

A Study of the Dry Etching Properties of TiN Thin Film in He/BCl3/Cl2 Inductively Coupled Plasma (He/BCl3/Cl2유도결합 플라즈마를 이용한 TiN 박막의 식각 특성)

  • Woo, Jong-Chang;Joo, Young-Hee;Park, Jung-Soo;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.718-722
    • /
    • 2011
  • In this work, we investigated to the etching characteristics of the TiN thin film in He/$BCl_3/Cl_2$ plasma. The etch rate was measured by the gas mixing ratio, the RF power, the DC bias voltage and the process pressure. The maximum etch rate in He/$BCl_3/Cl_2$ plasma was 59 nm/min. The etch rate increased as the RF power and the DC-bias voltage was increased. The chemical reaction on the surface of the etched the TiN thin films was investigated with X-ray photoelectron spectroscopy (XPS). The intensity of Ti 2p and N 1s peaks are varied during etching process. A new peak was appeared in He/$BCl_3/Cl_2$ plasma. The new peak was revealed Ti-$Cl_x$ by Cl 2p peak of XPS wild scan spectra analysis.

Dry Etching of Ru Electrodes using O2/Cl2 Inductively Coupled Plasmas

  • Kim, Hyoun Woo
    • Corrosion Science and Technology
    • /
    • v.2 no.5
    • /
    • pp.238-242
    • /
    • 2003
  • The characteristics of Ru etching using $O_2/Cl_2$ plasmas were investigated by employing inductively coupled plasma (ICP) etcher. The changes of Ru etch rate, Ru to $SiO_2$ etch selectivity and Ru electrode etching slope with the gas flow ratio, bias power, total gas flow rate, and source power were scrutinized. A high etching slope (${\sim}86^{\circ}$) and a smooth surface after etching was attained using $O_2/Cl_2$ inductively coupled plasma.

Characteristics of Amorphous Silicon Gate Etching in Cl2/HBr/O2 High Density Plasma (Cl2/HBr/O2 고밀도 플라즈마에서 비정질 실리콘 게이트 식각공정 특성)

  • Lee, Won Gyu
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.79-83
    • /
    • 2009
  • In this study, the characteristics of amorphous silicon etching for the formation of gate electrodes have been evaluated at the variation of several process parameters. When total flow rates composed of $Cl_2/HBr/O_2$ gas mixtures increased, the etch rate of amorphous silicon layer increased, but critical dimension (CD) bias was not notably changed regardless of total flow rate. As the amount of HBr in the mixture gas became larger, amorphous silicon etch rate was reduced by the low reactivity of Br species. In the case of increasing oxygen flow rate, etch selectivity was increased due to the reduction of oxide etch rate, enhancing the stability of silicon gate etching process. However, gate electrodes became more sloped according to the increase of oxygen flow rate. Higher source power induced the increase of amorphous silicon etch rate and CD bias, and higher bias power had a tendency to increase the etch rate of amorphous silicon and oxide.

Effects of $O_2$ Gas Addition to Dry Etching of Platinum. Thin Film by Inductively Coupled Plasma (유도 결합 플라즈마를 이용한 백금 박막의 건식 식각시 가스 첨가 효과)

  • Kim, Nam-Hoon;Kim, Chang-Il;Kwon, Kwang-Ho;Chang, Eui-Goo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.6
    • /
    • pp.451-455
    • /
    • 1999
  • The highest etch rate of Pt film was obtained at 10% $Cl_2$/90% Ar gas mixing ratio in our previous investigation. However, the problems such as the etch residues(fence) remained on the pattern sidewall, low selectivity to oxide as mask and low etch slope were presented. In this paper, the etching by additive $O_2$ gas to 10% $Cl_2$/90% Ar gas base was examined. As a result, the fence-free pattern and higher etch slope as about 60$^{\circ}$was observed and the selectivity to oxide increased to 2.4 without decreasing of the etch rate $1500{\AA}$/min. XPS surface analysis proved that a only little $O_2$ gas removes the Pt-CI compounds as residues on the etched surface.

  • PDF

The etch characteristics of TiN thin films using in $CH_4$/Ar plasma ($CH_4$/Ar 플라즈마를 이용한 TiN 박막의 식각특성 연구)

  • Woo, Jong-Chang;Um, Doo-Seung;Kim, Gwan-Ha;Kim, Dong-Pyo;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.247-248
    • /
    • 2008
  • The etching characteristics of Titanium Nitride (TiN) and etch selectivity of TiN to $SiO_2$ and $HfO_2$ in $CH_4$/Ar plasma were investigated. It was found that TiN etch rate shows a non-monotonic behavior with increasing both Ar fraction in $CH_4$ plasma, RF power, and gas pressure. The maximum TiN etch rate of nm/min was obtained for $CH_4$ (80%)/Ar(20%) gas mixture. The plasmas were characterized using optical emission spectroscopy (OES) analysis measurements. From these data, the suggestions on the TiN etch characteristics were made.

  • PDF