• Title/Summary/Keyword: Plasma display panels

Search Result 157, Processing Time 0.024 seconds

Novel Priming Discharge Overtopping with Display Period Technique for the Plasma Display Panels (플라즈마 디스플레이 패널의 새로운 표시기간 중첩 프라이밍 방전 기술)

  • Ryeom, Jeong-Duk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.8
    • /
    • pp.27-33
    • /
    • 2007
  • A novel priming discharge technique in which the ramp shaped priming pulse is superposed on the sustain period so that the entire plasma display panel (PDP) is discharged at the same time with a single drive circuit is proposed. From the experimental results, it is ascertained that the priming discharge is ignited only in a pixel in which sustain discharge does not occur and it has been understood that the priming pulse hardly influences the sustain discharge. Moreover, high-speed driving with address pulse widths of 0.7[${\mu}s$] was achieved and a wide address voltage margin of 40[V] was obtained by using the drive method applied the proposed priming discharge technique. In these results, full-HDTV PDP with 1080 horizontal scanning lines can be driven without decreasing the brightness and the possibility of the commercializing is also high because this technology is designed for using the commercialized driver IC.

A gas display device with electron emitter

  • Son, Seung-Hyun;Nam, Mun-Ho;Kim, Jung-Min;Cho, Sung-Hee;Jang, Sang-Hun;Kim, Gi-Young;Han, In-Su;Kim, Dae-Hyun;Cho, Young-Mi;Kim, Chang-Wook;Park, Hyoung-Bin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1253-1256
    • /
    • 2007
  • A display device combining plasma display panel (PDP) and field emission display (FED) is proposed to achieve high luminous efficiency. The device can avoid the main energy loss channels of both PDP (ion loss) and FED (low CL efficiency). $2{\sim}6$”-diagonal test panels with carbon nano-tube (CNT) electron emitter and Xenon ambient gas showed the luminous efficiency of 4.14lm/W and brightness of $263cd/m^2$ at 35V (1kHz, 1% duty), indicating that it is a good candidate for the low voltage driven, highly efficient next generation display.

  • PDF

A Shock Damage Evaluation Study of Large Digital TV Display Modules (대형 디지털TV Display 모듈의 내충격 설계를 위한 손상평가 연구)

  • 문성인;최재붕;김영진;서형원;이정권;구자춘
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.945-954
    • /
    • 2004
  • Recently, specifications of flat display module is going to be higher definition, brightness and more wide viewing angle. On the other hand, physical thickness of those modules is forced to be slimmer and lighter. The flat display modules such as plasma or TFT-LCD employ thin crystallized panels that are normally weak to high level transient mechanical energy inputs. As a result, anti-shock performance is one of the most important design specifications of TFT-LCD modules. TFT-LCD module manufacturers and their customers like PC or TV makers perform a series of strict impact/drop test for the modules. However most of the large display module designs are generated based on engineer's own trial-error experiences. Those designs may result in disqualification from the drop/impact test during final product evaluation. A rigorous study on the impact failure of the displays is of course necessitated in order to avoid the problems. In this article, a systematic design evaluation is presented with combinations of FEM modeling and testing to support the optimal shock proof display design procedure.

Study on Surface Characteristics of Fe Doped MgO Protective Layer (Fe가 첨가된 MgO 보호막의 표면특성 개선에 관한 연구)

  • Lee, Don-Kyu;Park, Cha-Soo;Kim, Kwong-Toe;Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.2
    • /
    • pp.106-112
    • /
    • 2010
  • In order to compete with other flat display devices such as Liquid Crystal Displays (LCDs) and organic light emitting diodes (OLEDs), Plasma Display Panels (PDPs) require to have high performances like high image quality, low power consumption and high speed driving. In this paper, Fe doped MgO protective layer was introduced for higher performance. Both the surface characteristics of the deposited thin films and the electro-optical properties of 4 inch test panels were investigated. It has been demonstrated experimentally that ac PDP with Fe doped MgO protective layer has lower discharge voltage than that of undoped MgO film, which corresponds to measured secondary electron emission coefficients. The crystallinity and surface roughness of thin films were determined by XRD patterns and AFM images. In addition, ac PDP with Fe doped MgO protective layer has improved address discharge time lag for high speed driving.

Lead free, Low temperature sealing materials for soda lime glass substrates in Plasma Display Panel (PDP)

  • Lee, Heon-Seok;Hwang, Jong-Hee;Lim, Tae-Young;Kim, Yoon-Hee;Lee, Suk-Hwa;Kim, Il-Won;Lee, Jong-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.373-376
    • /
    • 2008
  • New glass compositions for lead free, low temperature sealing glass frit was examined in $ZnO-V_2O_5-P_2O_5$ glass system which can be used sealing material for PDP to be made of soda lime glass substrates. Among many glass compositions, KFS-C glass showed low glass transition point (Tg) and good fluidity and adhesion characteristics when it was tested by flow button method at low temperature of $420^{\circ}C$. Its Tg was $317^{\circ}C$ and thermal expansion coefficient (CTE) was $70{\times}10^{-7}/K$. The glass frit was mixed with an organic vehicle to make a paste and it was dispensed and sealed with soda lime glass substrates at $420^{\circ}C$ for 10min. Sealed glass panels also showed good adhesion strength even sealed at low temperature of $420^{\circ}C$.

  • PDF

Discharge Characteristics of Narrow Width Pulse Addressing for the High-Speed Driving of Plasma Display Panels (플라즈마 디스플레이 패널의 고속 구동을 위한 세폭 펄스 어드레스 방전특성)

  • Ryeom, Jeong-Duk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.7
    • /
    • pp.13-19
    • /
    • 2007
  • This study relates to a new high-speed drive method for the full-HD PDP with 1080 horizontal scanning lines. The characteristics of the new drive method is evaluated considering the characteristics of the display discharge by the high-speed addressing. In this drive method, if the width of the address pulse narrows, the relati0[V]e discharge strength and the discharge time lag of the first display discharge are received the influence of it. Though the change in the applied position of the address pulse is unrelated to the discharge strength, it influences at the discharge time lag. However, the stable display discharges can be induced regardless of the address pulse position and width if the address pulse position is within [$6{\mu}s$] and the width is up to [$0.7{\mu}s$]. From the experiments, it has been understood that the high-speed drive technique with the address pulse of narrow width is sensitively influenced by the space charge because of the insufficiency of wall charge.

Influence of frequency and duty ratio on electro-optical characteristics in AC-PDP (AC-PDP에서의 주파수 및 duty비의 영향에 따른 전기광학적 특성)

  • Kim, T.Y.;Cho, T.S.;Ahn, J.C.;Choi, M.C.;Jeoung, J.M.;Leem, J.Y.;Jeoung, Y.H.;Kim, S.S.;Chong, M.W.;Choi, S.H.;Kim, S.B.;Ko, J.J.;Cho, K.S.;Choi, E.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.139-142
    • /
    • 2000
  • Influence of frequency and duty ratio on electro-optical characteristics are experimentally investigated in surface AC plasma display panels(AC-PDPs) by using the VDS(Versitile Driving Simulator)., in which electrode gap and width are 100 ${\mu}m$ and 260 ${\mu}m$, respectively. The filling gas is Ne-Xe gas mixture, and total pressure 400 Torr. It is found that the response time gets to be fast from 450 ns to 150 ns as pulse-off time of the sustain pulse decreases from 2 ${\mu}s$ to 0.2 ${\mu}s$. Also it is found that the IR(Infra Red) intensity and the luminous decreases as pulse-off time of the sustain pulse increases from 0.2 ${\mu}s$ to 2 ${\mu}s$.

  • PDF

Change of Optical Properties in Zinc Oxide-Based Glasses including Metal Oxides for Transparent Dielectric

  • Seo, Byung-Hwa;Kim, Hyung-Sun;Suh, Dong-Hack
    • Korean Journal of Materials Research
    • /
    • v.19 no.10
    • /
    • pp.533-537
    • /
    • 2009
  • This paper presents a new method for the improvement of color temperature without the change of the driving scheme using transparent dielectric layers with various metal oxides (CeO$_2$, Co$_3$O$_4$, CuO, Fe$_2$O$_3$, MnO$_2$, NiO) in plasma display panels (PDP). In this study, we fabricated ZnO-B$_2$O$_3$-SiO$_2$-Al$_2$O$_3$ glasse with various metal oxides and examined the optical properties of these glasses. As the metal oxides were added to the glasses, the visible transmittances of the dielectric layers decreased and the transmittances in special wavelength regions were reduced at different rates. The change of the transmittance in each wavelength range induced the variation of the visible emission spectra and the change of the color temperature in the PDP. The addition of Co$_3$O$_4$ and CuO slightly decreased the intensity of the blue light, but the intensities of the green and the red light were significantly decreased. Therefore, the color temperature can be improved from 6087K to 7378K and 7057K, respectively.

An Improved Subfield Method for PDP Employing a Constant Slope Code (기울기가 일정한 코드를 사용한 개선된 PDP용 subfield 기법)

  • Lee, Young-Sam;Kim, Rin-Chul;Lee, Byung-Uk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.5
    • /
    • pp.504-512
    • /
    • 2002
  • This paper presents a new subfield method that can alleviate the visual artifact called the dynamic false contour (DFC), which occurs on plasma display panels. Nothing that the DFC is caused by the difference of time intervals between the adjacent subfields, we propose a constant slope code, in which the differences are maintained to be constant. Also, we propose a subfield code that can minimize the mean absolute error, considering the trade-off between the peak magnitude of the error and its duration. We will show that the proposed subfield method maintains an adequate performance in the view point of the human visual system, since the bound of the errors increases with the gray scale.

High Frequency and High Luminance AC-PDP Sustaining Driver

  • Choi Seong-Wook;Han Sang-Kyoo;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.73-82
    • /
    • 2006
  • Plasma display panels (PDPs) have a serious thermal problem, because the luminance efficiency of a conventional PDP is about 1.5 1m/W and it is less than $3\~5\;lm/W$ of a cathode ray tube (CRT). Thus there is a need for improving the luminance efficiency of the PDP. There are several approaches to improve the luminance efficiency of the PDP and we adopted a driving PDP at high frequency range from 400kHz up to over 700kHz. Since a PDP is regarded as an equivalent inherent capacitance, many types of sustaining drivers have been proposed and widely used to recover the energy stored in the PDP. However, these circuits have some drawbacks for driving PDPs at high frequency ranges. In this paper, we investigate the effect of the parasitic components on the PDP itself and on the driver when the reactive energy of the panel is recovered. Various drivers are classified and evaluated based on their suitability for high frequency drivers. Finally, a current-fed driver with a DC input voltage bias is proposed. This driver overcomes the effect of parasitic components in the panel and driver. It fully achieves a ZVS of all full-bridge switches and reduces the transition time of the panel polarity. It is tested to validate the high frequency sustaining driver and the experimental results are presented.