• Title/Summary/Keyword: Plasma Fluid Model

Search Result 90, Processing Time 0.023 seconds

Numerical analysis of the striation phenomena in an ac Plasma Display Panel using energy fluid model

  • Bae, Hyun-Sook;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.33-36
    • /
    • 2007
  • We performed a discharge analysis on ac plasma display panel through the numerical simulation of the EF (Energy Fluid) model using the electron's energy equation. When it is compared to the results of commonly used LFA (Local Field Approximation) model, there is a clear difference in the spatiotemporal distribution of Xe excited species. In particular, the experimentally observed striation phenomena in the anode region could be observed in EF model and the occurrence of the striation was attributed to the ionization and excitation instability due to the streaming electrons in the anode region plasma.

  • PDF

Numerical Modeling of Floating Electrodes in a Plasma Processing System

  • Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • v.24 no.4
    • /
    • pp.102-110
    • /
    • 2015
  • Fluid model based numerical analysis is done to simulate a plasma processing system with electrodes at floating potential. $V_f$ is a function of electron temperature, electron mass and ion mass. Commercial plasma fluid simulation softwares do not provide options for floating electrode boundary value condition. We developed a user subroutine in CFD-ACE+ and compared four different cases: grounded, dielectric, zero normal electric field and floating electric potential for a 2D-CCP (capacitively coupled plasma) with a ring electrode.

The Present Status of Development of Inductively Coupled Plasma Simulator based on Fluid Model (유체 모델을 기반으로 하는 유도 결합 플라즈마 시뮬레이터 개발 현황)

  • Kwon, D.C.;Yoon, N.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.151-163
    • /
    • 2009
  • The domestic development status of Inductively Coupled Plasma (ICP) simulator which is based on fluid model is explained. As each part which composes the unified simulator, electron heating module, charged and neutral particle transport module, surface reaction module including a sheath model, and GUI (Graphic User Interface) with pre- and post-processors are described in order. Also, we present data base status of chemical reaction and physical collision, which has been applied to the recently developed simulator until now. Lastly, some future plans of development are suggested.

Analysis of Time-Dependent Behavior of Plasma Sheath using Ion Fluid Model (이온유체방정식을 이용한 Plasma Sheath 시변 해석)

  • Lee, Ho-Jun;Lee, Hae-June
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2173-2178
    • /
    • 2007
  • Dynamics of plasma sheath was analyzed using simple ion fluid model with poison equation. Incident ion current, energy, potential distribution and space charge density profile were calculated as a function of time. The effects of initial floating sheath on the evolution of biased sheath were compared with ideal matrix sheath. The effects of finite rising time of pulse bias voltage on the ion current and energy was studied. The influence of surface charging on the evolution of sheath was also investigated

Analysis on the lgnition Charac teristics of Pseudospark Discharge Using Hybrid Fluid-Particle(Monte Carlo) Method (혼성 유체-입자(몬테칼로)법을 이용한 유사스파크 방전의 기동 특성 해석)

  • 심재학;주홍진;강형부
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.7
    • /
    • pp.571-580
    • /
    • 1998
  • The numerical model that can describe the ignition of pseudospark discharge using hybrid fluid-particle(Monte Carlo )method has been developed. This model consists of the fluid expression for transport of electrons and ions and Poisson's equation in the electric field. The fluid equation determines the spatiotemporal dependence of charged particle densities and the ionization source term is computed using the Monte carlo method. This model has been used to study the evolution of a discharge in Argon at 0.5 torr, with an applied voltage if 1kV. The evolution process of the discharge has been divided into four phases along the potential distribution : (1) Townsend discharge, (2) plasma formation, (3) onset of hollow cathode effect, (4) plasma expansion. From the numerical results, the physical mechanisms that lead to the rapid rise in current associated with the onset of pseudospark could be identified.

  • PDF

Time Dependent Interaction between Electromagnetic Wave and Dielectric Barrier Discharge Plasma Using Fluid Model (유체 모델을 이용한 유전체 장벽 방전 플라즈마와 전자기파 간의 시간 의존적 상호 작용 분석)

  • Kim, Yuna;Oh, Il-Young;Jung, Inkyun;Hong, Yongjun;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.8
    • /
    • pp.857-863
    • /
    • 2014
  • In determining interaction between plasma and electromagnetic wave, plasma frequency and collision frequency are two key parameters. They are derived from electron density and temperature, which vary in an extremely wide range, depending on a plasma generator. Because the parameters are usually unknown, traditional researches have utilized simplified electron density model and constant electron temperature approximation. Introduction of plasma fluid model to electromagnetics is suggested to utilize relatively precise time dependent variables for given generator. Dielectric barrier discharge(DBD) generator is selected due to its simple geometry which allows us to use one dimensional analysis. Time dependent property is analyzed when microwave is launched toward parallel plate DBD plasma. Afterwards, attenuation tendency with the change of electron density and temperature is demonstrated.

NUMERICAL ANALYSIS OF AN ARC PLASMA IN A DC ELECTRIC FURNACE

  • Lee Yeon Won;Lee Jong Hoon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.30-33
    • /
    • 2004
  • In order to analyze the heat transfer phenomena in the plasma flames, a mathematical model describing heat and fluid How in an electric arc has been developed and used to predict heat transfer from the arc to the steel bath in a DC Electric Arc Furnace. The arc model takes the separate contributions to the heat transfer from each involved mechanism into account, i.e. radiation, convection and energy transported by electrons. The finite volume method and a SIMPLE algorithm are used for solving the governing MHD equations, i.e., conservation equations of mass, momentum, and energy together with the equations describing a standard $k-\varepsilon$ model for turbulence. The model predicts heat transfer for different currents and arc lengths. Finally these calculation results can be used as a useful insight into plasma phenomena of the industrial-scale electric arc furnace. from these results, it can be concluded that higher arc current and longer arc length give high heat transfer.

  • PDF

Study on RF Plasma Modeling Between Unequal-Sized Electrodes Using One-dimensional Fluid Method (비대칭 전극계에서의 1차원적 RF 플라즈마 모델링에 관한 연구)

  • So Soon-Youl;Lim Jang-Seob
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.35-41
    • /
    • 2004
  • In computational study on RF(Radio Frequency) plasmas, a 1D fluid models with an advantage of a short computational time are often adopted. However, in order to obtain realistic calculation results under a typical chamber geometry with unequal-sized electrodes, modeling of the plasma space is an issue to be investigated. In this paper, it is focused on that how much a 1D model can approximate a 2D model. 1D fluid models with unequal-sized electrodes, which have spherical and frustum geometry systems, were developed and their results were compared with those of 2D model with Gaseous Electronic Conference cell structure. Behavior of $N_2$ RF plasmas has been simulated using 1D and 2D fluid models and a technique to take account of unequal-sized electrodes in a 1D fluid models has been examined. Features of the plasma density and the electric potential were discussed as characteristic quantities representing the asymmetry of the chamber geometry.

Numerical Modeling of an Inductively Coupled Plasma Sputter Sublimation Deposition System

  • Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • v.23 no.4
    • /
    • pp.179-186
    • /
    • 2014
  • Fluid model based numerical simulation was carried out for an inductively coupled plasma assisted sputter deposition system. Power absorption, electron temperature and density distribution was modeled with drift diffusion approximation. Effect of an electrically conducting substrate was analyzed and showed confined plasma below the substrate. Part of the plasma was leaked around the substrate edge. Comparison between the quasi-neutrality based compact model and Poisson equation resolved model showed more broadened profile in inductively coupled plasma power absorption than quasi-neutrality case, but very similar Ar ion number density profile. Electric potential was calculated to be in the range of 50 V between a Cr rod source and a conductive substrate. A new model including Cr sputtering by Ar+was developed and used in simulating Cr deposition process. Cr was modeled to be ionized by direct electron impact and showed narrower distribution than Ar ions.

The Analysis of $SF_6/N_2$ Plasma Properties Under the Atmosphere Pressure ($SF_6/N_2$ 혼합기체의 대기압 플라즈마 특성 분석)

  • So, Soon-Youl;Lee, Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.516-520
    • /
    • 2009
  • Atmosphere Plasmas of Gas Discharge (APGD) have been used in plasma sources for material processing such as etching, deposition, surface modification, etc. This study is to investigate and understand the fundamental plasma discharge properties. Especially, $SF_6/N_2$ mixed gas would be used in power transformer, GIS (Gas insulated switchgear) and so on. In this paper, we developed a one dimensional fluid simulation model with capacitively coupled plasma chamber at the atmosphere pressure (760 [Torr]). 38 kinds of $SF_6/N_2$ plasma particles which are an electron, two positive ions (${SF_5}^+$, ${N_2}^+$), five negative ions (${SF_6}^-$, ${SF_5}^-$, ${SF_4}^-$, ${F_2}^-$, ${F_1}^-$), thirty excitation and vibrational particles for $N_2$ were considered in this computation. The $N_2$ gases of 20%, 50%, 80% were mixed in $SF_6$ gas. As the amount of $N_2$ gas was increased, the properties of electro-negative plasma moved toward the electro-positive plasma.