Browse > Article
http://dx.doi.org/10.5515/KJKIEES.2014.25.8.857

Time Dependent Interaction between Electromagnetic Wave and Dielectric Barrier Discharge Plasma Using Fluid Model  

Kim, Yuna (Department of Electric and Electronic Engineering, Yonsei University)
Oh, Il-Young (Department of Electric and Electronic Engineering, Yonsei University)
Jung, Inkyun (Department of Electric and Electronic Engineering, Yonsei University)
Hong, Yongjun (Agency for Defence Development)
Yook, Jong-Gwan (Department of Electric and Electronic Engineering, Yonsei University)
Publication Information
Abstract
In determining interaction between plasma and electromagnetic wave, plasma frequency and collision frequency are two key parameters. They are derived from electron density and temperature, which vary in an extremely wide range, depending on a plasma generator. Because the parameters are usually unknown, traditional researches have utilized simplified electron density model and constant electron temperature approximation. Introduction of plasma fluid model to electromagnetics is suggested to utilize relatively precise time dependent variables for given generator. Dielectric barrier discharge(DBD) generator is selected due to its simple geometry which allows us to use one dimensional analysis. Time dependent property is analyzed when microwave is launched toward parallel plate DBD plasma. Afterwards, attenuation tendency with the change of electron density and temperature is demonstrated.
Keywords
Plasma Fluid Model; Dispersion Relation; DBD Plasma; Atmospheric Pressure Plasma; Microwave Attenuation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Chaudhury, S. Chaturvedi, "Three-dimensional computation of reduction in radar cross section using plasma shielding", Plasma Science, IEEE Transactions on, vol. 33, no. 6, pp. 2027-2034, 2005.   DOI
2 B. Chaudhury, S. Chaturvedi, "Comparison of wave propagation studies in plasmas using three-dimensional finite- difference time-domain and ray-tracing methods", Physics of Plasmas, vol. 13, no. 12, pp. 123302, 2006.   DOI   ScienceOn
3 B. Chaudhury, S. Chaturvedi, "Study and optimization of plasma-based radar cross section reduction using threedimensional computations", Plasma Science, IEEE Transactions on, vol. 37, no. 11, pp. 2116-2127, 2009.   DOI
4 O. Il-Young, H. Yongjun, and Y. Jong-Gwan, "Extremely low dispersion higher order (2,4) 2-D-FDTD scheme for maxwell-boltzmann system", Antennas and Propagation, IEEE Transactions on, vol. 61, no. 12, pp. 6100-6106, 2013.   DOI
5 G. Cerri, F. Moglie, R. Montesi, P. Russo, and E. Vecchioni, "FDTD solution of the maxwell-boltzmann system for electromagnetic wave propagation in a plasma", Antennas and Propagation, IEEE Transactions on, vol. 56, pp. 2584-2588, 2008.   DOI   ScienceOn
6 H. W. Yang, "A FDTD analysis on magnetized plasma of Epstein distribution and reflection calculation", Computer Physics Communications, vol. 180, no. 1, pp. 55- 60, 2009.   DOI
7 J. Boeuf, L. Pitchford, "Electrohydrodynamic force and aerodynamic flow acceleration in surface dielectric barrier discharge", Journal of Applied Physics, vol. 97, no. 10, pp. 103307-103307-10, 2005.   DOI
8 COMSOL, Comsol multiphysics modeling guide 4.3b (COMSOL AB, Stockholm, 2013).
9 A. A. Fridman, L. A. Kennedy, Plasma Physics and Engineering, CRC, 2004.
10 A. K. Srivastava, M. K. Garg, K. G. Prasad et al., "Characterization of atmospheric pressure glow discharge in helium using Langmuir probe, emission spectroscopy, and discharge resistivity", Plasma Science, IEEE Transactions on, vol. 35, no. 4, pp. 1135-1142, 2007.   DOI
11 G. Cerri, F. Moglie, R. Montesi et al., "FDTD solution of the Maxwell-Boltzmann system for electromagnetic wave propagation in a plasma", Antennas and Propagation, IEEE Transactions on, vol. 56, no. 8, pp. 2584- 2588, 2008.   DOI   ScienceOn
12 A. Srivastava, G. Prasad, P. Atrey, and V. Kumar, "Attenuation of microwaves propagating through parallel-plate helium glow discharge at atmospheric pressure", Journal of Applied Physics, vol. 103, no. 3, pp. 033302- 033302-7, 2008.   DOI   ScienceOn
13 A. P. Zilinskij, I. E. Sacharov, and V. E. Golant, Fundamentals Plasma Physics, Moscow: MIR, 1983.
14 A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, "The atmospheric-pressure plasma jet: A review and comparison to other plasma sources", Plasma Science, IEEE Transactions on, vol. 26, no. 6, pp. 1685-1694, 1998.   DOI   ScienceOn
15 P. Baille, J. -S. Chang, A. Claude, R. Hobson, G. Ogram, and A. Yau, "Effective collision frequency of electrons in noble gases", Journal of Physics B: Atomic and Molecular Physics, vol. 14, no. 9, p. 1485, 1981.   DOI
16 Y. Kim, I-. Y. Oh, Y. Hong, and J-. G. Yook, "Numerical investigation of interaction between argon glow discharge and electromagnetic waves", Isromac-15, Feb. 2014.
17 D. B. Graves, K. F. Jensen, "A continuum model of DC and RF discharges", Plasma Science, IEEE Transactions on, vol. 14, no. 2, pp. 78-91, 1986.   DOI
18 B. Chaudhury, S. Chaturvedi, "Study and optimization of plasma-based radar cross section reduction using threedimensional computations", Plasma Science, IEEE Transactions on, vol. 37, no. 11, pp. 2116-2127, 2009.   DOI