• 제목/요약/키워드: Plane rotation axis

검색결과 80건 처리시간 0.022초

회전축 정렬불량을 가지는 유연 회전디스크의 고유치 해석 (Natural Frequencies of a Spinning Disk Misaligned with the Axis of Rotation)

  • 허진욱;정진태;김원석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.817-825
    • /
    • 2001
  • The natural frequencies of a flexible spinning disk misaligned with the axis of rotation are studied in an analytic manner. The effects of misalignment on the natural frequency need to be investigated, because the misalignment between the axis of symmetry and the axis of rotation cannot be avoided in the removable disks such as CD-R, CD-RW or DVD disks. Assuming that the in-plane displacements are in steady state and the out-of-plane displacement is in dynamic state, the equations of motion are derived for the misaligned spinning disk. After the exact solutions are obtained for the steady-state in-plane displacements, they are plugged into the equation for the dynamic-state out-of-plane motion. The resultant equation is a linear equation for the out-of-plane displacement, which is discretized by the Galerkin method. Based on the discretized equations, the effects of the misalignment are analyzed on the vibration characteristics of the spinning disk, i.e., the natural frequencies and the critical speed

  • PDF

비정형 구조물의 평면 회전축과 코어의 이동에 따른 지진응답분석 (Analysis of Seismic Response by the Movement of the Plane Rotation Axis and the Core of Atypical Structures)

  • 이다혜;김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제22권1호
    • /
    • pp.33-40
    • /
    • 2022
  • When the center of stiffness and the center of mass of the structure differ under the seismic load, torsion is caused by eccentricity. In this study, an analysis model was modeled in which the positions of the core and the plane rotation axis of a 60-story torsional atypical structure with a plane rotation angle of 1 degree per floor were different. The structural behavior of the analysis model was analyzed, and the earthquake response behavior of the structure was analyzed based on the time history analysis results. As a result, as the eccentricity of the structure increased, the eccentricity response was amplified in the high-rise part, and the bending and torsional behavior responses were complex in the low-order vibration mode. As a result of the analysis, the maximum displacement and story drift ratio increased due to the torsional behavior. The maximum story shear force and the story absolute maximum acceleration showed similarities for each analysis model according to the shape of the vibration mode of the analysis model.

Numerical optimization of flow uniformity inside an under body- oval substrate to improve emissions of IC engines

  • Om Ariara Guhan, C.P.;Arthanareeswaran, G.;Varadarajan, K.N.;Krishnan, S.
    • Journal of Computational Design and Engineering
    • /
    • 제3권3호
    • /
    • pp.198-214
    • /
    • 2016
  • Oval substrates are widely used in automobiles to reduce the exhaust emissions in Diesel oxidation Catalyst of CI engine. Because of constraints in space and packaging Oval substrate is preferred rather than round substrate. Obtaining the flow uniformity is very challenging in oval substrate comparing with round substrate. In this present work attempts are made to optimize the inlet cone design to achieve the optimal flow uniformity with the help of CATIA V5 which is 3D design tool and CFX which is 3D CFD tool. Initially length of inlet cone and mass flow rate of exhaust stream are analysed to understand the effects of flow uniformity and pressure drop. Then short straight cones and angled cones are designed. Angled cones have been designed by two methodologies. First methodology is rotating flow inlet plane along the substrate in shorter or longer axis. Second method is shifting the flow inlet plane along the longer axis. Large improvement in flow uniformity is observed when the flow inlet plane is shifted along the direction of longer axis by 10, 20 and 30 mm away from geometrical centre. When the inlet plane is rotated again based on 30 mm shifted geometry, significant improvement at rotation angle of $20^{\circ}$ is observed. The flow uniformity is optimum when second shift is performed based on second rotation. This present work shows that for an oval substrate flow, uniformity index can be optimized when inlet cone is angled by rotation of flow inlet plane along axis of substrate.

회전축 정렬불량을 가지는 유연회전디스크의 유한요소법을 이용한 시간응답해석 (Finite Element Analysis for Time Response of a Flexible Spinning Disk with Translating Misalignment)

  • 허진욱;정진태
    • 대한기계학회논문집A
    • /
    • 제26권9호
    • /
    • pp.1905-1913
    • /
    • 2002
  • Using the finite element method, this study investigates the dynamic time responses of a flexible spinning disk of which axis of rotation is misaligned with the axis of symmetry. The misalignment between the axes of symmetry and rotation is one of the major vibration sources in optical disk drives such as CD-ROM, CD-R, CD-RW and DVD drives. Based upon the Kirchhoff plate theory and the von-Karman strain theory, three coupled equations of motion for the misaligned disk are obtained: two of the equations are for the in-plane motion while the other is for the out-of-plane motion. After transforming these equations into two weak forms for the in-plane and out-of-plane motions, the weak forms are discretized by using newly defined annular sector finite elements. Applying the generalized-$\alpha$ time integration method to the discretized equations, the time responses and the displacement distributions are computed and then the effects of the misalign ment on the responses and the distributions are analyzed. The computation results show that the misalignment has an influence on the magnitudes of the in-plane displacements and it results in the amplitude modulation or the beat phenomenon in the time responses of the out-of-plane displacement.

마이크로 3축 링 자이로스코프의 동역학 (Dynamics of a Micro Three-Axis Ring Gyroscope)

  • 최상현;김창부
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.37-43
    • /
    • 2002
  • In this paper, we analyse and present mechanical dynamic characteristics of a micro-machined vibrating silicon ring gyroscope which can measure angular velocities about three orthogonal axes. The ring gyroscope has a ring connected to the gyroscope main body by support-ligaments which are arranged with cyclic symmetry. The natural modes of its vibration can be distinguished into the in-plane motion and the out-of-plane motion which are coupled by the gyro-effect due to the rotation of the gyroscope main body. The equations of motion, the response to angular velocities, and the relationships between the natural modes of vibration are derived and compared with the previous studies for the design of a micro three-axis ring gyroscope.

  • PDF

마이크로 3축 링 자이로스코프의 동역학 (Dynamics of a Micro Three-axis Ring Gyroscope)

  • 최상현;김창부
    • 한국소음진동공학회논문집
    • /
    • 제12권12호
    • /
    • pp.1001-1009
    • /
    • 2002
  • In this paper, we analyse and present mechanical dynamic characteristics of a micro-machined vibrating silicon ring gyroscope which can measure angular velocities about three orthogonal axes. The ring gyroscope has a ring connected to the gyroscope main body by support-ligaments which are arranged with cyclic symmetry. The natural modes of its vibration can be distinguished into the in-plane motion and the out-of-plane motion which are coupled by the gyro-effect due to the rotation of the gyroscope main body. The equations of motion, the response to angular velocities, and the relationships between the natural modes of vibration are derived and compared with the previous studies for the design of a micro three-axis ring gyroscope.

Kinematic properties of the Ursa Major Cluster

  • Kim, YoungKwang;Lee, Young Sun;Beers, Timothy C.
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.30.3-31
    • /
    • 2015
  • We present a kinematic analysis of 172 likely member galaxies of the Ursa Major Cluster. In order to understand the dynamical state of the cluster, we investigate the correlation of the cluster morphology with rotation, the velocity dispersion profile, and the rotation amplitude parallel to the global rotation direction. Both the minor axis and the rotation are very well-aligned with the global rotation axis in the outer region at half radius (> 0.5 $R_{max}$), but not in the inner region. The cluster exhibits low velocity dispersion and rotation amplitude profiles in the inner region, but higher in the outer. Both profiles exhibit outwardly increasing trends, suggesting an inside-out transfer of angular momentum of dark matter via violent relaxation, as revealed by a recent off-axis major-merging simulation. From Dressler-Schectman plots in the plane of galactic positions, and velocity versus position angle of galaxy, we are able to divide the Ursa Major Cluster into two substructures: Ursa Major South (UMS) and Ursa Major North (UMN). We derive a mass of $3.2{\times}10^{14}M_{\odot}$ for the cluster through the two-body analysis by the timing argument with the distance information (37 for UMN and 36 for UMS) and the spin parameter of ${\lambda}=0.049$. The two substructures appear to have passed each other 4.4 Gyr ago and are moving away to the maximum separation.

  • PDF

Rough surface characterization using off-axis digital holographic microscopy compensated with self-hologram rotation

  • Ibrahim, Dahi Ghareab Abdelsalam
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1261-1267
    • /
    • 2018
  • In this paper, an off-axis digital holographic microscopy compensated with self-hologram rotation is presented. The process is implemented via subtracting the unwrapped phase maps of the off-axis parabolic hologram and its rotation $180^{\circ}$ to eliminate the tilt induced by the angle between the spherical object wave O and the plane reference wave R. Merit of the proposed method is that it can be done without prior knowledge of physical parameters and hence can reconstruct a parabolic hologram of $1024{\times}768$ pixels within tens of milliseconds since it doesn't require a digital reference wave. The method is applied to characterize rough gold bumps and the obtained results were compared with those extracted from the conventional reconstruction method. The comparison showed that the proposed method can characterize rough surfaces with excellent contrast and in realtime. Merit of the proposed method is that it can be used for monitoring smaller biological cells and micro-fluidic devices.

대칭면을 갖는 강체 진동계의 진동모드에 대한 기하학적 해석 (The Geometrical Mode Analysis of an Elastically Suspended Rigid Body with Planes of Symmetry)

  • 단병주;최용제
    • 대한기계학회논문집A
    • /
    • 제24권1호
    • /
    • pp.110-117
    • /
    • 2000
  • Vibration modes obtained from a modal analysis can be better explained from a screw theoretical standpoint. A vibration mode can be geometrically interpreted as a pure rotation about the vibration center in a plane and as the twisting motion on a screw in a three dimensional space. This paper, presents the method to diagonalize a spatial stiffness matrix by use of a parallel axis congruence transformation. It also describes that the stiffness matrix diagonalized by a congruence transformation, can have the planes of symmetry depending on the location of the center of elasticity. For a plane of symmetry, any vibration mode can be expressed by the axis of vibration. Analytical solutions for the axis of vibration has been derived.

Rotation Effect of In-plane FM layer on IrMn Based GMR-SV Film

  • Khajidmaa, Purevdorj;Choi, Jong-Gu;Lee, Sang-Suk
    • Journal of Magnetics
    • /
    • 제22권1호
    • /
    • pp.7-13
    • /
    • 2017
  • The magnetoresistance (MR) properties of antiferromagnetic (AFM) IrMn based giant magnetoresistance-spin valve (GMR-SV) was investigated in view point of the artificial rotation effect of ferromagnetic (FM) layer in the plane induced by an applied field during the post annealing temperature. The MR curves measured with an azimuthal angle region of ${\phi}=0^{\circ}-360^{\circ}$ are depended on the annealing temperature and the magnetization easy axis of two free NiFe layers and two pinned NiFe layers in dual-type GMR-SV film. Especially, the annealing temperature and sample rotation angle(${\theta}$ ) maintained to the magnetic sensitivity (MS) of 1.4 %/Oe with an isotropic region angle of $110^{\circ}$ are $100^{\circ}C$ and $90^{\circ}$, respectively.