• Title/Summary/Keyword: Planarization effect

Search Result 78, Processing Time 0.045 seconds

Effect of pH level and slurry particle size on the chemical mechanical planarization of langasite crystal wafer (pH level 및 slurry 입도가 langasite wafer의 chemical mechanical planarization에 미치는 영향)

  • Cho Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.1
    • /
    • pp.34-38
    • /
    • 2005
  • Effects of pH level and slurry particle size on material removal rate and planarization of langasite single crystal wafer have been examined. Higher material removal rate was obtained with lower pH level slurries while the planarization was found to be determined by average particle size of colloidal silica slurries. Slurries containing 0.045 ㎛ amorphous silica particles showed the best polishing effect without any scratches on the surface. Effective particle number has a strong effect on the surface planarization and the removal rate, so that the lower effective particle numbers produced low removal rate but the better planarization results.

Effect of slurry on CMP characteristics of Blanket Wafer (Blanket Wafer의 CMP특성에 Slurry가 미치는 영향)

  • 김경준;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.172-176
    • /
    • 1996
  • The rapid structural change of ULSI chip includes minimum features, multilevel interconnection and large diameter wafers. Demands for the advanced chip structure necessitates the development of enhanced deposition, etching and planarization techniques. Planarization refers to a process that make rugged surfaces flat and uniform. One of the emerging technologies for planarization is chemical mechanical polishing(CMP). Chemical and mechanical removal actions occur during CMP, and both appear to be closely interrelated. The purpose of this study is the optimal application of the slurry to the various types of device materials during CMP. We investigates the effect of slurry on CMP characteristics for thermal oxide and sputtered Al blanket wafers. Results from the polishing rate and the uniformity of residual film include mechanical and chemical reactions between several set of slurry and work material.

  • PDF

Effect of Citric Acid in Cu Chemical Mechanical Planarization Slurry on Frictional Characteristics and Step Height Reduction of Cu Pattern

  • Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.226-234
    • /
    • 2018
  • Copper chemical mechanical planarization (CMP) has become a key process in integrated circuit (IC) technology. The results of copper CMP depend not only on the mechanical abrasion, but also on the slurry chemistry. The slurry used for Cu CMP is known to have greater chemical reactivity than mechanical material removal. The Cu CMP slurry is composed of abrasive particles, an oxidizing agent, a complexing agent, and a corrosion inhibitor. Citric acid can be used as the complexing agent in Cu CMP slurries, and is widely used for post-CMP cleaning. Although many studies have investigated the effect of citric acid on Cu CMP, no studies have yet been conducted on the interfacial friction characteristics and step height reduction in CMP patterns. In this study, the effect of citric acid on the friction characteristics and step height reduction in a copper wafer with varying pattern densities during CMP are investigated. The prepared slurry consists of citric acid ($C_6H_8O_7$), hydrogen peroxide ($H_2O_2$), and colloidal silica. The friction force is found to depend on the concentration of citric acid in the copper CMP slurry. The step heights of the patterns decrease rapidly with decreasing citric acid concentration in the copper CMP slurry. The step height of the copper pattern decreases more slowly in high-density regions than in low-density regions.

Dependency of Planarization Efficiency on Crystal Characteristic of Abrasives in Nano Ceria Slurry for Shallow Trench Isolation Chemical Mechanical Polishing (STI CMP용 나노 세리아 슬러리에서 연마입자의 결정특성에 따른 평탄화 효율의 의존성)

  • Kang, Hyun-Goo;Takeo Katoh;Kim, Sung-Jun;Ungyu Paik;Park, Jea-Gun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.65-65
    • /
    • 2003
  • Chemical mechanical polishing (CMP) is one of the most important processes in recent ULSI (Ultra Large Scale Integrated Circuit) manufacturing technology. Recently, ceria slurries with surfactant have recently been used in STI-CMP,[1] became they have high oxide-to-nitride removal selectivity and widen the processing margin The role of the abrasives, however, on the effect of planarization on STI-CMP is not yet clear. In this study, we investigated how the crystal characteristic affects the planarization efficiency of wafer surface with controlling crystallite size and poly crystalline abrasive size independently.

  • PDF

The Effect of Mechanical Properties of Polishing Pads on Oxide CMP(Chemical Mechanical Planarization)

  • Hong, Yi-Koan;Eom, Dae-Hong;Kang, Young-Jae;Park, Jin-Goo;Kim, Jae-Seok;Kim, Geon;Lee, Ju-Yeol;Park, In-Ha
    • KSTLE International Journal
    • /
    • v.5 no.1
    • /
    • pp.32-35
    • /
    • 2004
  • The purpose of this study is to investigate the effects of the structure and mechanical properties of laser-processed pads on their polishing behavior such as their removal rate and WIWNU (within wafer non-uniformity) during the chemical mechanical planarization (CMP) process. The holes on the pad acted as the reservoir of slurry particles and enhanced the removal rate. Without grooves, no effective removal of wafers was possible. When the length of the circular-type grooves was increased, higher removal rates and lower wafer non-uniformity were measured. The removal rate and non-uniformity linearly increased as the elastic modulus of the top pad increased. Higher removal rates and lower non-uniformity were measured as the hardness of the pad increased.

Dielectric Layer Planarization Process for Silicon Trench Structure (실리콘 트랜치 구조 형성용 유전체 평탄화 공정)

  • Cho, Il Hwan;Seo, Dongsun
    • Journal of IKEEE
    • /
    • v.19 no.1
    • /
    • pp.41-44
    • /
    • 2015
  • Silicon trench process for bulk fin field effect transistor (finFET) is suggested without using chemical mechanical polishing (CMP) that cause contamination problems with chemical stuff. This process uses thickness difference of photo resistor spin coating and silicon nitride sacrificial layer. Planarization of silicon oxide and silicon trench formation can be performed with etching processes. In this work 50 nm silicon trench is fabricated with AZ 1512 photo resistor and process results are introduced.

Effect of Surface Roughness on the Formation of Micro-Patterns by Soft Lithography (표면 평탄도가 소프트리소법에 의한 미세 패턴 형성에 미치는 영향)

  • Kim, Kyung Ho;Choi, Kyun;Han, Yoonsoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.871-876
    • /
    • 2014
  • Efficiency of crystalline Si solar cell can be maximized as minimizing optical loss through antireflection texturing with inverted pyramids. Even if cost-competitive, soft lithography can be employed instead of photolithography for the purpose, some limitations still remain to apply the soft lithography directly to as-received solar grade wafer with a bunch of micro trenches on surface. Therefore, it is needed to develop a low-cost, effective planarization process and evaluate its output to be applicable to patterning process with PDMS stamp. In this study new surface planarization process is proposed and the change of micro scale trenches on the surface as a function of etching time is observed. Also, the effect of trenches on pattern quality by soft lithography is investigated using FEM structural analysis. In conclusion it is clear that the geometry and shape of trenches would be basic considerations for soft lithography application to low quality wafer.

The Effect of Mechanical Properties of Polishing Pads on Oxide CMP ( Chemical Mechanical Planarization )

  • Hong, Yi-Koan;Eom, Dae-Hong;Kang, Young-Jae;Park, Jin-Goo;Kim, Jae-Suk;Kim, Geon;Lee, Ju-Yeol;Park, In-Ha
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.445-446
    • /
    • 2002
  • The purpose of this study was to investigate the effect of micro holes, pattern structure and elastic modulus of pads on the polishing behavior such as the removal rate and WIWNU (within wafer non-uniformity) during CMP. The regular holes on the pad act as the superior abrasive particle's reservoir and regular distributor at the bulk pad, respectively. The superior CMP performance was observed at the laser processed bulk pad with holes. Also, th ε groove pattern shape was very important for the effective polishing. Wave grooved pad showed higher removal rates than K-grooved pad. The removal rate was linearly increased as the top pad's elastic modulus increased.

  • PDF