Browse > Article
http://dx.doi.org/10.4313/JKEM.2014.27.12.871

Effect of Surface Roughness on the Formation of Micro-Patterns by Soft Lithography  

Kim, Kyung Ho (Engineering Ceramic Team, KICET Ichron Branch)
Choi, Kyun (Engineering Ceramic Team, KICET Ichron Branch)
Han, Yoonsoo (Engineering Ceramic Team, KICET Ichron Branch)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.27, no.12, 2014 , pp. 871-876 More about this Journal
Abstract
Efficiency of crystalline Si solar cell can be maximized as minimizing optical loss through antireflection texturing with inverted pyramids. Even if cost-competitive, soft lithography can be employed instead of photolithography for the purpose, some limitations still remain to apply the soft lithography directly to as-received solar grade wafer with a bunch of micro trenches on surface. Therefore, it is needed to develop a low-cost, effective planarization process and evaluate its output to be applicable to patterning process with PDMS stamp. In this study new surface planarization process is proposed and the change of micro scale trenches on the surface as a function of etching time is observed. Also, the effect of trenches on pattern quality by soft lithography is investigated using FEM structural analysis. In conclusion it is clear that the geometry and shape of trenches would be basic considerations for soft lithography application to low quality wafer.
Keywords
Antireflection; Planarization; Soft lithography;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. Wenham and M. Green, ARC Photovoltaics Centre of Excellence, University of New South Wales, 2009 Annual Report, 76 (2009).
2 A. Offenhausser, S. B. Meffert, T. Decker, R. Helpenstein, P. Gasteier, J. Groll, M. Moller, A. Reska, S. Schafer, P. Schulte, and A. V. Eisele, Soft Matter, 3, 290 (2007).   DOI
3 R. K. Smith, P. A. Lewis, and P. S. Weiss, Progress in Surface Science 75, 1 (2004).   DOI   ScienceOn
4 Y. S. Chi, J. K. Lee, K. B. Lee, D. J. Kim, and I. S. Choi, Bull. Korean Chem. Rev., 26, 361 (2005).   DOI
5 E. E. Johan, U. K. Sajid, and F. G. Ole, J. of the European Ceramic Society, 30, 1555 (2010).   DOI
6 C. Acikgoz, M.A. Hempenius, J. Huskens, and G. J. Vancso, European Polymer Journal, 47, 2033 (2011).   DOI
7 A. Mujahid, N. Iqbal, and A. Afzal, Biotechnology Advances, 31, 1435 (2013).   DOI
8 J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Chem. Rev., 105, 1103 (2005).   DOI   ScienceOn
9 Y. S. Chi, S. M. Kang, and I. S. Choi, Polymer Science and Technology, 17-2, 172 (2006).
10 J. Hong and Y. S. Han, J. KIEEME, 26, 841 (2013).
11 D. Qin, Y. Xia, and G. M. Whitesides, Nature Protocols, 5, 491 (2010).   DOI   ScienceOn
12 F. Huo, Z. Zheng, G. Zheng, L. Giam, H. Zhang, and C. A. Mirkin, Science, 321, 1658 (2008).   DOI   ScienceOn
13 M. J. Madou, Fundamentals of Microfabrication, 2nd ed. (CRC Press LLC, 2002) Chapter. 4.
14 I. Zubel, Sensors and Actuators A, 70, 260 (1998).   DOI
15 Y. Yu and Y. Zhao, J. Colloid and Interface Science, 332, 467 (2009).   DOI
16 D. Falconnet, G. Csucs, H. M. Grandin, and M. Textor, Biomaterials, 27, 3044 (2006).   DOI   ScienceOn