• Title/Summary/Keyword: Planar MOSFET

Search Result 34, Processing Time 0.019 seconds

Highly Manufacturable 65nm McFET (Multi-channel Field Effect Transistor) SRAM Cell with Extremely High Performance

  • Kim, Sung-Min;Yoon, Eun-Jung;Kim, Min-Sang;Li, Ming;Oh, Chang-Woo;Lee, Sung-Young;Yeo, Kyoung-Hwan;Kim, Sung-Hwan;Choe, Dong-Uk;Suk, Sung-Dae;Kim, Dong-Won;Park, Dong-Gun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.1
    • /
    • pp.22-29
    • /
    • 2006
  • We demonstrate highly manufacturable Multi-channel Field Effect Transistor (McFET) on bulk Si wafer. McFET shows excellent transistor characteristics, such as $5{\sim}6 times higher drive current than planar MOSFET, ideal subthreshold swing, low drain induced barrier lowering (DIBL) without pocket implantation and negligible body bias dependency, maintaining the same source/drain resistance as that of a planar transistor due to the unique feature of McFET. And suitable threshold voltage ($V_T$) for SRAM operation and high static noise margin (SNM) are achieved by using TiN metal gate electrode.

Electrical Characteristics of Enhancement-Mode n-Channel Vertical GaN MOSFETs and the Effects of Sidewall Slope

  • Kim, Sung Yoon;Seo, Jae Hwa;Yoon, Young Jun;Kim, Jin Su;Cho, Seongjae;Lee, Jung-Hee;Kang, In Man
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1131-1137
    • /
    • 2015
  • Gallium nitride (GaN) is a promising material for next-generation high-power applications due to its wide bandgap, high breakdown field, high electron mobility, and good thermal conductivity. From a structure point of view, the vertical device is more suitable to high-power applications than planar devices because of its area effectiveness. However, it is challenging to obtain a completely upright vertical structure due to inevitable sidewall slope in anisotropic etching of GaN. In this letter, we design and analyze the enhancement-mode n-channel vertical GaN MOSFET with variation of sidewall gate angle by two-dimensional (2D) technology computer-aided design (TCAD) simulations. As the sidewall slope gets closer to right angle, the device performances are improved since a gradual slope provides a leakage current path through the bulk region.

Analysis of SOHOS Flash Memory with 3-level Charge Pumping Method

  • Yang, Seung-Dong;Kim, Seong-Hyeon;Yun, Ho-Jin;Jeong, Kwang-Seok;Kim, Yu-Mi;Kim, Jin-Seop;Ko, Young-Uk;An, Jin-Un;Lee, Hi-Deok;Lee, Ga-Won
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.34-39
    • /
    • 2014
  • This paper discusses the 3-level charge pumping (CP) method in planar-type Silicon-Oxide-High-k-Oxide-Silicon (SOHOS) and Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) devices to find out the reason of the degradation of data retention properties. In the CP technique, pulses are applied to the gate of the MOSFET which alternately fill the traps with electrons and holes, thereby causing a recombination current Icp to flow in the substrate. The 3-level charge pumping method may be used to determine not only interface trap densities but also capture cross sections as a function of trap energy. By applying this method, SOHOS device found to have a higher interface trap density than SONOS device. Therefore, degradation of data retention characteristics is attributed to the many interface trap sites.

Low Resistance 3.3kV 4H-SiC Trench Shielded DMOSFET (Trench Shield 구조를 갖는 3.3kV급 저저항 4H-SiC DMOSFET)

  • Cha, Kyu-hyun;Kim, Kwang-su
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.619-625
    • /
    • 2020
  • In this paper, we propose a TS-DMOSFET(Trench Shielded DMOSFET) structure in which P+ shielding region is formed in a deeper region than C-DMOSFET(Conventional DMOSFET) and S-DMOSFET(Shielded DMOSFET). Using TCAD simulation to compare the static characteristics of TS-DMOSFET with C- and S-DMOSFET. As for the structure proposed, the doping is followed by the source trench process. Despite the fact that it is a SiC material, this allows it to form a P+ shielding region in a deep area. Followed by completely suppressing the reach-through effect. As a result, when the breakdown voltage of the three structures is 3.3kV, the Ron of TS-DMOSFET is 9.7mΩ㎠. Thus, it is 68% and 54% smaller than the Ron of C-DMOSFET and S-DMOSFET respectively.