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Abstract – Gallium nitride (GaN) is a promising material for next-generation high-power applications 
due to its wide bandgap, high breakdown field, high electron mobility, and good thermal conductivity. 
From a structure point of view, the vertical device is more suitable to high-power applications than 
planar devices because of its area effectiveness. However, it is challenging to obtain a completely 
upright vertical structure due to inevitable sidewall slope in anisotropic etching of GaN. In this letter, 
we design and analyze the enhancement-mode n-channel vertical GaN MOSFET with variation of 
sidewall gate angle by two-dimensional (2D) technology computer-aided design (TCAD) simulations. 
As the sidewall slope gets closer to right angle, the device performances are improved since a gradual 
slope provides a leakage current path through the bulk region. 
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1. Introduction 
 
The wide bandgap, high electron mobility, high critical 

electric field, and good thermal conductivity of gallium 
nitride (GaN) make GaN useful for high-power and high-
temperature applications [1-6]. In recent studies, most of 
attention has been drawn to either silicon carbide (SiC) 
power metal-oxide-semiconductor field-effect transistors 
(MOSFETs) or high electron mobility transistors (HEMTs) 
[7-12]. However, the continuous developments of SiC 
MOSFETs and GaN HEMTs have been hindered by their 
own limits. SiC MOSFET has weaknesses that it is hard 
to form high-quality oxide/SiC interface and its channel 
mobility and device reliability are relatively low [13, 14]. 
Although the GaN HEMT has high two-dimensional 
electron gas (2-DEG) density and high mobility, it suffers 
from current collapse which is mainly due to the electric 
field induced from the AlGaN surface under the gate and 
large gate leakage current which is owing to the absence 
of gate insulator [15]. It also operates at normally-on 
mode due to the existence of 2-DEG populated below 
fermi level under equilibrium condition at zero bias. The 
GaN MOSFET can be also operated at a normally-off 
mode with much lower gate leakage current under certain 
design conditions while its high electron mobility and 
density can be somehow sacrificed. Although SiC MOSFET 
has been a dominant power device, GaN MOSFET has 
superiority in terms of high-quality GaN channel-gate 

insulator interface, high mobility, and blocking voltage 
[5, 14]. Vertical channel provides advantages of high 
current density per unit area and scalability of gate length. 
Also, it helps achieving simpler and less destructive 
processing (less damage) getting rid of either ion 
implantation process or electron-beam irradiation in 
device fabrication than lateral channel, since a vertical 
GaN device is usually fabricated by epitaxial growths 
[16-18]. In addition, the cylindrical-shaped structure brings 
higher gate controllability and enhanced current drivability 
[19-22]. However, fabrication of a complete vertical 
structure can be challenging due to the etching process 
for sidewall formation that substantially controls the device 
performances. For this reason, the sidewall gate slope can 
be regarded as one of the design variables. 

In this work, the effects of sidewall gate slope and the 
electrical characteristics of enhancement-mode n-channel 
vertical GaN MOSFET are closely investigated. The device 
was designed by a two-dimensional (2D) technology 
computer-aided design (TCAD) simulations [23]. Maximum 
drain current (Imax), on-state resistance (Ron), threshold 
voltage (Vth), subthreshold swing (S), transconductance 
(gm), and breakdown voltage (VB) are examined. 

 
 

2. Simulation Results and Discussions 
 

2.1 Device structure 
 
Figs. 1(a)-(b) present the three-dimensional schematic 

view and the cross-sectional view of the simulated GaN 
MOSFET with an indication of the current path. The high-
κ gate oxide material is Al2O3 and its equivalent oxide 
thickness (EOT) is 30 nm. The gate workfunction is 5.2 eV. 
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The GaN layers consist of 0.5-μm n+ GaN for drain 
junction, 1-μm n- GaN for the drift region, 0.3-μm p- GaN 
for channel, and 0.5-μm n+ GaN for source junction. The 
doping concentrations of these GaN layers are 1×1018 cm-3, 
1×1016 cm-3, 1×1017 cm-3, and 1×1018 cm-3, in sequence. 
The sidewall gate angle is defined as the acute angle 
between the substrate and the sidewall, as indicated at 
the right-side bottom of the gate in Fig. 1(b). The p-GaN 
channel lengths (Lch) are 1.15 μm, 0.51 μm, 0.34 μm, and 
0.3 μm at sidewall angles (θ) of 15o, 36o, 60o, 90o, 
respectively. Also, at these angles, the source-to-drain 
lengths (LSD) are 23.2 μm, 19.4 μm, 18.4 μm, and 18.1 μm, 
in sequence. 

For higher accuracy and quality in simulation work, 
we have been included the k.p band parameter model for 
wurtzite structure of GaN in order to calculate the effective 
masses and band edge energies. We also added the specific 
electric field-dependent mobility models for GaN and the 
direct recombination model accounting for high level 
injection effects. The Fowler-Nordheim tunneling model 
has been included for the analysis of electron tunneling 
phenomenon into conduction band of the gate dielectric 
when the electric field across the gate dielectric is 
adequately high. In addition to this, the Shockley-Read-
Hall (SRH) recombination model, the Selberherr’s impact 
ionization model for the off-state breakdown characteristic, 
and other material-related parameters for GaN have been 
included [23]. 

 

 
Fig. 2. Output characteristics of n-channel vertical GaN 

MOSFET with the sidewall angles of (a) 15o, (b) 
36o, and (c) 90o. 

 
2.2 Results and discussions 

 
With above-mentioned structure, its device charac-

teristics are investigated at different sidewall angles. Figs. 
2(a)-(c) show the output characteristics of the simulated n-
channel vertical GaN MOSFET as the sidewall angle varies. 
As the sidewall angle increases, Imax increases owing to 
reduction of channel resistance and Ron, accordingly: a 
larger sidewall angle shortens the channel length and drift 
region. In the same manner, Imax decreases and Ron 
increases as the sidewall angle gets smaller.  

Fig. 3(a) depicts Ron and Imax as a function of sidewall 
angle, where Ron and Imax show monotonic decrease and 
increase, respectively, as could be inferred by Figs. 2(a)-(c). 
Imax values were 34.3 mA/mm, 105.5 mA/mm, and 934.0 
mA/mm, respectively, when the sidewall angles were 15°, 
36°, and 90°. Also, at these angles, Ron’s were 36.7 mΩ·cm2, 

 
(a) 

 
(b) 

Fig. 1. (a) Three-dimensional schematic view and (b) 
Cross-sectional view of the simulated enhancement-
mode n-channel vertical GaN MOSFET. 
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9.7 mΩ·cm2, and 1.6 mΩ·cm2, in sequence. In practice, 
GaN layer has wurtzite crystal structure. After the mesa 
etching process, GaN layer has the sidewall slope and the 
dislocations such as defects or traps may occur due to the 
anisotropic effect. Owing to these defects of traps in the 
surface of sidewall, the electron mobility and the drain 
current are expected to decrease due to the current collapse 
[24, 25]. In this paper, however, the influence of channel 
length modulation is investigated in priority because the 
change of the Lch and LSD by sidewall slope is more 
dominant. Fig. 3(b) shows the method of extracting Ron 

of a device of which sidewall angle is 36°. The above 
simulation results show that larger sidewall angle warrants 
better Ron and Imax at the same time. 

Fig. 4 shows the change of Ron as a function of LSD and 
the change of LSD with different sidewall angles is displayed 
in inset of figure. As the sidewall angle varies, the LSD also 
varies with the variation of Lch. As shown in Fig. 4, the 
Ron is directly proportional to the LSD. In other words, 
there is a linear relationship between Ron and LSD because 
the distance between the source and drain behaves like a 
resistor towards electrons. 

Figs. 5(a)-(c) demonstrate the ID-VGS transfer curves 
and transconductances (gm) at different sidewall angles. 
Vth was extracted based on the constant current method 
(at the gate voltage for which IDS= 10-1 mA/mm). VDS was 
kept constant at 10 V during the VGS sweep. Vth’s were 4.9 
V, 3.5 V, and 2.9 V at sidewall angles of 15°, 36°, and 90°, 

    

 
Fig. 3. Sidewall angle-dependent direct-current (DC) per-

formances. (a) Ron and Imax as a function of sidewall 
angle. (b) Extraction of Ron (sidewall angle = 36°). 

 

 
Fig. 4. Ron as a function of source-to-drain length (LSD). 

The inset shows the LSD with different sidewall 
angles. 

   

 

 
Fig. 5. ID-VGS characteristics of the simulated n-channel 

vertical GaN MOSFET with sidewall angles of (a) 
15°, (b) 36°, and (c) 90° at VDS = 10 V. 
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respectively, where the lowering at higher angles was due 
to the reduction of physical channel length. Peak transcon-
ductance was 2.6 mS/mm at a sidewall angle of 15°, 6.9 
mS/mm at 36°, and 53.2 mS/mm at 90°. Again, these 
results support that larger sidewall angle ensures better DC 
performances along with the parameters in the previous 
part. 

Fig. 6 demonstrates the ID-VGS curves at different 
sidewall angles (VDS = 10 V for VGS sweep). It is shown 
that the off-state currents (Ioff’s) of the devices are below 
nA level, which indicates that the devices are in the 
complete pinch-off states. The current ratios (Ion/Ioff) are 
1.8×1011 at a sidewall angle of 15°, 1.6×1012 at 36°, and 
4.5×1013 at 90°. Further, S values were 157.1 mV/dec, 
119.3 mV/dec, and 87.6 mV/dec at 15°, 36°, and 90°, 
respectively. These results also stem from the effect of 
physical channel length modulated by controlling the 
sidewall angle. The increase of the sidewall angle results 
in shortening the channel length alongside increasing the 
threshold voltage. Therefore, on-state current increases 
drastically. The on-state currents vary depending on the 
sidewall angles, whereas the off-state currents are kept 
similarly. For this reason, S is also influenced by the 
sidewall angles. 

Fig. 7 shows the off-state breakdown characteristics at 
different sidewall angles at VGS = 0 V, where it is found that 
breakdown voltage (VB) increases as the sidewall angle 
gets larger. VB’s were 37 V at a sidewall angle of 15°, 65 V 
at 36°, 91 V at 60°, and 106 V at 90°. Thin region of GaN 
layer gets wider as the sidewall angle gets smaller and the 
leakage current flows through the this region. For this 
reason, when the sidewall angle is relatively small, the 

 

 

 

 
Fig. 8. Electron concentrations which indicate breakdown 

leakage currents with the sidewall angles of (a) 
15°, (b) 36°, (c) 60°, and (d) 90°. 

 
Fig. 6. ID-VGS transfer curve (logarithmic scale) at different 

sidewall angles at VDS = 10 V. 

 
Fig. 7. Off-state breakdown characteristics at different 

sidewall angles at VGS = 0 V. 



Sung Yoon Kim, Jae Hwa Seo, Young Jun Yoon, Jin Su Kim, Seongjae Cho, Jung-Hee Lee and In Man Kang 

 http://www.jeet.or.kr │ 1135

leakage current tends to flow through the bulk region of 
GaN layer more probably. On the contrary, the leakage 
current conducts not through the bulk region of GaN layer 
but through the gate electrode as the sidewall angle is 
relatively large. This gate leakage current results from high 
electric field at the drain-side gate edge.  

Figs. 8(a) - (d) indicate the electron concentrations 
after the occurrence of breakdown leakage currents and 
each biases are displayed in inset of figures. With the 
aforementioned off-state breakdown characteristics, intro-
duction of a proper passivation layer such as either AlN 
thin film [26, 27] or field plate [28, 29] enhances the 
robustness against the breakdown. 

 
 

3. Conclusion 
 
In this work, we investigated the effects of sidewall 

angles on electrical characteristics of enhancement-mode 
n-channel vertical GaN MOSFET in terms of Imax, Ron, Vth, 
S, and VB. As the result, larger sidewall angle improves the 
overall device performances. Therefore, it would be critical 
to construct the sidewall gates with right angles as much 
as the anisotropic dry etching permits, for both device 
performances and area-effectiveness. One drawback that 
sharp slope might bring is the breakdown characteristics 
but it would overcome by appropriate passivation 
techniques relieving the electric field at the gate edge. 
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