• Title/Summary/Keyword: Planar MOSFET

Search Result 34, Processing Time 0.023 seconds

A Study on High-voltage Low-power Power MOSFET of Optimization for Industrial Motor Drive (산업용 모터 구동을 위한 고내압 저전력 Power MOSFET 최적화 설계에 관한 연구)

  • Kim, Bum-June;Chung, Hun-Suk;Kim, Seong-Jong;Jung, Eun-Sik;Kang, Ey-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.3
    • /
    • pp.170-175
    • /
    • 2012
  • Power MOSFET is develop in power savings, high efficiency, small size, high reliability, fast switching, low noise. Power MOSFET can be used high-speed switching transistors devices. Recently attention to the motor and the application of various technologies. Power MOSFET is devices the voltage-driven approach switching devices are design to handle on large power, power supplies, converters, motor controllers. In this paper, design the 600 V Planar type, and design the trench type for realization of low on-resistance. For both structures, by comparing and analyzing the results of the simulation and characterization.

Breakdown Voltage Improvement in SOI MOSFET Using Gate-Recessed Structure (게이트가 파인 구조를 이용한 SOI MOSFET에서의 항복전압 개선)

  • 최진혁;박영준;민홍식
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.159-165
    • /
    • 1995
  • A gate-recessed structure is introduced to SOI MOSFET's in order to increase the source-to-drain breakdown voltage. A significant increase in the breakdown voltage is observed compared with that of a planar single source/drain SOI MOSFET without inducing the appreciable reduction of the current drivability. We have analyzed the origin of the breakdown voltage improvement by the substrate current measurements and 2-D device simulations, and shown that the breakdown voltage improvement is caused by the reductions in the impact ionization rate and the parasitic bipolar current gain.

  • PDF

A Study on the Fabrication of the Convex Structured MOSFET and Its Electrical Characteristics (Convex 구조를 갖는 MOSFET 소자의 제작 및 그 전기적 특성에 관한 연구)

  • Kim, Gi-Hong;Kim, Hyun-Chul;Kim, Heung-Sik;An, Chul
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.8
    • /
    • pp.78-88
    • /
    • 1992
  • To improve the characteristics of sub$\mu$m short channel MOSFET device, a new device having the convex structure is proposed. This device has 3-dimensionally expandable channel length according to the vertical etched silicon height. For the purpose of comparing the DC and AC characteristics, planar device is also fabricated. Comparing the channel length, the convex device with 0.4$\mu$m silicon height is larger about 0.56$\mu$m in NMOS and 0.78$\mu$m in PMOS than planar devices. DC characteristics, such as threshold voltage, operational current, substrate current and breakdown voltage are compared together with AC characteristics using the ring oscillator inverter delay. Also process and device simulation are performed and the differences between convex and pranaldevice are also compared.

  • PDF

Optimization of Ar Reshape Process for 4H-SiC Trench MOSFET (4H-SiC Trench MOSFET 응용을 위한 Ar Reshape 공정 최적화)

  • Sung, Min-Je;Kang, Min-Jae;Kim, Hong-Ki;Kim, Seong-jun;Lee, Jung-Yoon;Lee, Wonbeom;Lee, Nam-suk;Shin, Hoon-Kyu
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1234-1237
    • /
    • 2018
  • For 4H-SiC trench MOSFET which can reduce on-resistance and switching losses compared to 4H-SiC planar MOSFET, the optimization study for decrease of sub-trench was carried out. In order to decrease sub-trench, Ar reshape process was used and trench shapes were observed as a function of temperature and process time. As a result, it was confirmed that the process conditions for $1500^{\circ}C$ and 20 min were most effective for the suitable trench profiles. In addition, dry/wet oxidation was performed at the Ar reshaped-samples to observe the oxidation thickness with different crystal orientations.

Design of 80 V Grade Low-power Semiconductor Device (80 V급 저전력 반도체 소자의 관한 연구)

  • Sim, Gwan Pil;Ann, Byoung Sup;Kang, Ye Hwan;Hong, Young Sung;Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.190-193
    • /
    • 2013
  • Power MOSFET and Power IGBT is develop in power savings, high efficiency, small size, high reliability, fast switching, low noise. Power MOSFET can be used high-speed switching transistors devices. Power MOSFET is devices the voltage-driven approach switching devices are design to handle on large power, power supplies, converters. In this paper, design the 80V MOSFET Planar Gate type, and design the Trench Gate type for realization of low on-resistance. For both structures, by comparing and analyzing the results of the simulation and characterization.

A Study About Design and Characteristic Improvement According to P-base Concentration Charge of 500 V Planar Power MOSFET (500 V 급 Planar Power MOSFET의 P 베이스 농도 변화에 따른 설계 및 특성 향상에 관한 연구)

  • Kim, Gwon Je;Kang, Ye Hwan;Kwon, Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.4
    • /
    • pp.284-288
    • /
    • 2013
  • Power MOSFETs(Metal Oxide Semiconductor Field Effect Transistor) operate as energy control semiconductor switches. In order to reduce energy loss of the device during switch-on state, it is essential to increase its conductance. We have experimental results and explanations on the doping profile dependence of the electrical behavior of the vertical MOSFET. The device is fabricated as $8.25{\mu}m$ cell pitch and $4.25{\mu}m$ gate width. The performances of device with various p base doping concentration are compared at Vth from 1.77 V to 4.13 V. Also the effect of the cell structure on the on-resistance and breakdown voltage of the device are analyzed. The simulation results suggest that the device optimized for various applications can be further optimized at power device.

Development of 900 V Class MOSFET for Industrial Power Modules (산업 파워 모듈용 900 V MOSFET 개발)

  • Chung, Hunsuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.109-113
    • /
    • 2020
  • A power device is a component used as a switch or rectifier in power electronics to control high voltages. Consequently, power devices are used to improve the efficiency of electric-vehicle (EV) chargers, new energy generators, welders, and switched-mode power supplies (SMPS). Power device designs, which require high voltage, high efficiency, and high reliability, are typically based on MOSFET (metal-oxide-semiconductor field-effect transistor) and IGBT (insulated-gate bipolar transistor) structures. As a unipolar device, a MOSFET has the advantage of relatively fast switching and low tail current at turn-off compared to IGBT-based devices, which are built on bipolar structures. A superjunction structure adds a p-base region to allow a higher yield voltage due to lower RDS (on) and field dispersion than previous p-base components, significantly reducing the total gate charge. To verify the basic characteristics of the superjunction, we worked with a planar type MOSFET and Synopsys' process simulation T-CAD tool. A basic structure of the superjunction MOSFET was produced and its changing electrical characteristics, tested under a number of environmental variables, were analyzed.

Analysis of Electrical Characteristics According to Fabrication of 500 V Unified Trench Gate Power MOSFET

  • Kang, Ey Goo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.4
    • /
    • pp.222-226
    • /
    • 2016
  • This paper investigated the trench process, unified field limit ring, and other products for the development of a 500 V-level unified trench gate power MOSFET. The optimal base chemistry for the device was found to be SF6. In SEM analysis, the step process of the trench gate and field limit ring showed outstanding process results. After finalizing device design, its electrical characteristics were compared and contrasted with those of a planar device. It was shown that, although both devices maintained a breakdown voltage of 500 V, the Vth and on-state voltage drop characteristics were better than those of the planar type.

Simulation Studies on the Super-junction MOSFET fabricated using SiGe epitaxial process (SiGe 에피 공정기술을 이용하여 제작된 초 접합 금속-산화막 반도체 전계 효과 트랜지스터의 시뮬레이션 연구)

  • Lee, Hoon-Ki;Park, Yang-Kyu;Shim, Kyu-Hwan;Choi, Chel-Jong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.3
    • /
    • pp.45-50
    • /
    • 2014
  • In this paper, we propose a super-junction MOSFET (SJ MOSFET) fabricated through a simple pillar forming process by varying the Si epilayer thickness and doping concentration of pillars using SILVACO TCAD simulation. The design of the SJ MOSFET structure is presented, and the doping concentration of pillar, breakdown voltage ($V_{BR}$) and drain current are analyzed. The device performance of conventional Si planar metal-oxide semiconductor field-effect transistor(MOSFET), Si SJ MOSFET, and SiGe SJ MOSFET was investigated. The p- and n-pillars in Si SJ MOSFET suppressed the punch-through effect caused by drain bias. This lead to the higher $V_{BR}$ and reduced on resistance of Si SJ MOSFET. An increase in the thickness of Si epilayer and decrease in the former is most effective than the latter. The implementation of SiGe epilayer to SJ MOSFET resulted in the improvement of $V_{BR}$ as well as drain current in saturation region, when compared to Si SJ MOSFET. Such a superior device performance of SiGe SJ MOSFET could be associated with smaller bandgap of SiGe which facilitated the drift of carriers through lower built-in potential barrier.

Fabrication and characteristics of MOSFET protein sensor using gold-black gate (Gold-Black 게이트를 이용한 MOSFET형 단백질 센서의 제조 및 특성)

  • Kim, Min-Suk;Park, Keun-Yong;Kim, Ki-Soo;Kim, Hong-Seok;Bae, Young-Seuk;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.137-143
    • /
    • 2005
  • Research in the field of biosensor has enormously increased over the recent years. The metal-oxide semiconductor field effect transistor (MOSFET) type protein sensor offers a lot of potential advantages such as small size and weight, the possibility of automatic packaging at wafer level, on-chip integration of biosensor arrays, and the label-free molecular detection. We fabricated MOSFET protein sensor and proposed the gold-black electrode as the gate metal to improve the response. The experimental results showed that the output voltage of MOSFET protein sensor was varied by concentration of albumin proteins and the gold-black gate increased the response up to maximum 13 % because it has the larger surface area than that of planar-gold gate. It means that the expanded gate allows a larger number of ligands on same area, and makes the more albumin proteins adsorbed on gate receptor.