• 제목/요약/키워드: Pipe end conditions

검색결과 44건 처리시간 0.027초

Effect of soil condition on the coefficient of lateral earth pressure inside an open-ended pipe pile

  • Ko, Junyoung;Jeong, Sangseom;Seo, Hoyoung
    • Geomechanics and Engineering
    • /
    • 제31권2호
    • /
    • pp.209-222
    • /
    • 2022
  • Finite element analyses using coupled Eulerian-Lagrangian technique are performed to investigate the effect of soil conditions on plugging of open-ended piles in sands. Results from numerical simulations are compared against the data from field load tests on three open-ended piles and show very good agreement. A parametric study focusing on determination of the coefficient of lateral earth pressure (K) in soil plug after pile driving are then performed for various soil densities, end-bearing conditions, and layering conditions. Results from the parametric study suggest that the K value in the soil plug - and hence the degree of soil plugging - increases with increasing soil densities. The analysis results further show that the K value within the soil plug can reach about 63 to 71% of the coefficient of passive earth pressure after pile driving. For layered soil profiles, the greater K values are achieved after pile driving when the denser soil layer is present near the pile base regardless of number of soil layers. This study provides comprehensive numerical and experimental data that can be used to develop advanced theory for analysis and design of open-ended pipe piles, especially for estimation of inner shaft resistance after pile driving.

고주파 벤딩을 통한 케이블 파이프의 변형에 관한 연구 (A Study on the Deformation of Cable Pipes via Induction Bending)

  • 주이환;진진;문성민;류성기
    • 한국기계가공학회지
    • /
    • 제19권4호
    • /
    • pp.79-84
    • /
    • 2020
  • Induction bending via high-frequency heating is widely used for manufacturing pipe and section steel bends. It allows productivity improvement, unit cost reduction, delivery time compliance, and good mechanical properties. The recent increase in high-end vessels and offshore plants has raised the demand for high-frequency bending, which should improve the product quality and reduce the costs by simplifying the fabrication process; therefore, the characteristics and performance of this technique must be studied and proper design technology is required. During hot pipe bending via induction heating, the outward wall thickness of the pipe is thinned due to tensile stress and this thickness reduction cannot exceed 12.5%. This study focused on pipe bends with a bending curvature of 5D and their optimization design; in particular, the conditions that can both improve the productivity of the high-frequency bending process and keep the maximum thickness reduction below 12.5% were determined.

ON-POWER DETECTION OF PIPE WALL-THINNED DEFECTS USING IR THERMOGRAPHY IN NPPS

  • Kim, Ju Hyun;Yoo, Kwae Hwan;Na, Man Gyun;Kim, Jin Weon;Kim, Kyeong Suk
    • Nuclear Engineering and Technology
    • /
    • 제46권2호
    • /
    • pp.225-234
    • /
    • 2014
  • Wall-thinned defects caused by accelerated corrosion due to fluid flow in the inner pipe appear in many structures of the secondary systems in nuclear power plants (NPPs) and are a major factor in degrading the integrity of pipes. Wall-thinned defects need to be managed not only when the NPP is under maintenance but also when the NPP is in normal operation. To this end, a test technique was developed in this study to detect such wall-thinned defects based on the temperature difference on the surface of a hot pipe using infrared (IR) thermography and a cooling device. Finite element analysis (FEA) was conducted to examine the tendency and experimental conditions for the cooling experiment. Based on the FEA results, the equipment was configured before the cooling experiment was conducted. The IR camera was then used to detect defects in the inner pipe of the pipe specimen that had artificially induced defects. The IR thermography developed in this study is expected to help resolve the issues related to the limitations of non-destructive inspection techniques that are currently conducted for NPP secondary systems and is expected to be very useful on the NPPs site.

단부 경계조건을 고려한 매설관의 동적응답 해석 (I) (Analysis of Seismic Response of the Buried Pipeline with Pipe End Conditions (I))

  • 정진호;이병길;박병호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1148-1158
    • /
    • 2005
  • This work reports results of our study on the dynamic responses of the buried pipelines both along the axial and the transverse directions under various boundary end conditions. We have considered three cases, i.e., the free ends, the fixed ends, and the fixed-free ends. We have studied the seismic responses of the buried pipelines with the various boundary end conditions both along the axial and the transverse direction. We have considered three cases, i.e., the free ends, the fixed ends, and the fixed-free ends for the axial direction, and three more cases including the guided ends, the simply supported ends, and the supported-guided ends for the transverse direction. The buried pipelines are modeled as beams on elastic foundation while the seismic waves as a ground displacement in the form of a sinusoidal wave. The natural frequency and its mode, and the effect of parameters have been interpreted in terms of free vibration. The natural frequency varies most significantly by the soil stiffness and the length of the buried pipelines in the case of free vibration, which increases with increasing soil stiffness and decreases with increasing length of the buried pipeline. Such a behavior appears most prominently along the axial rather than the transverse direction of the buried pipelines. The resulting frequencies and the mode shapes obtained from the free vibration for the various boundary end conditions of the pipelines have been utilized to derive the mathematical formulae for the displacements and the strains along the axial direction, and the displacements and the bending strains along the transverse direction in case of the forced vibration. The negligibly small difference of 6.2% between our result and that of Ogawa et. al. (2001) for the axial strain with a one second period confirms the accuracy of our approach in this study.

  • PDF

Effects of Diverse Water Pipe Materials on Bacterial Communities and Water Quality in the Annular Reactor

  • Jang, Hyun-Jung;Choi, Young-June;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권2호
    • /
    • pp.115-123
    • /
    • 2011
  • To investigate the effects of pipe materials on biofilm accumulation and water quality, an annular reactor with the sample coupons of four pipe materials (steel, copper, stainless steel, and polyvinyl chloride) was operated under hydraulic conditions similar to a real plumbing system for 15 months. The bacterial concentrations were substantially increased in the steel and copper reactors with progression of corrosion, whereas those in stainless steel (STS) and polyvinyl chloride (PVC) reactors were affected mainly by water temperature. The heterotrophic plate count (HPC) of biofilms was about 100 times higher on steel pipe than other pipes throughout the experiment, with the STS pipe showing the lowest bacterial number at the end of the operation. Analysis of the 16S rDNA sequences of 176 cultivated isolates revealed that 66.5% was Proteobacteria and the others included unclassified bacteria, Actinobacteria, and Bacilli. Regardless of the pipe materials, Sphingomonas was the predominant species in all biofilms. PCR-DGGE analysis showed that steel pipe exhibited the highest bacterial diversity among the metallic pipes, and the DGGE profile of biofilm on PVC showed three additional bands not detected from the profiles of the metallic materials. Environmental scanning electron microscopy showed that corrosion level and biofilm accumulation were the least in the STS coupon. These results suggest that the STS pipe is the best material for plumbing systems in terms of the microbiological aspects of water quality.

전산유체해석(CFD)을 이용한 밸브의 급폐쇄에 따른 다중 배관 수격 현상에 관한 연구 (Study on a Multi-pipe Water Hammer Phenomenon by using CFD of Rapid Valve Closing)

  • 박노석;김성수;강문선;최종웅
    • 상하수도학회지
    • /
    • 제27권4호
    • /
    • pp.479-487
    • /
    • 2013
  • This study was to investigate characteristics for the pressure wave propagation and the maximum pressure near a rapid closure valve which was installed the end of multi piping network. The multi piping network consists of one inlet and three outlet with straight pipes. The diameter of the pipes including the valve was 100 mm, 80 mm, 80 mm respectively. The valve was rapidly closed with the instantaneous time which was 0.023s in the level for the water hammer. For the simulation, the influence of the pipe thickness and deformation due to pressure-wave-propagation was not considered. CFD was conducted under the following condition : the initial pressure was 1bar in the inlet and the mass flow rate was 7.83 kg/s in the outlet(the velocity in the pipe with 100 mm diameter was 1 m/s). As the valve have conditions that were status with and without fluid flow in the pipe after valve closing, the maximum pressure change and the frequency analysis were examined. As the results, the case that was status with fluid flow appeared the higher maximum pressure than another's, the maximum frequency band was about 10 ~ 11 Hz.

다중 회귀 분석을 활용한 Tee-Pipe 버링 공정에서 찢어짐 방지를 위한 피어싱 펀치 형상 최적 설계 (Multiple Regression Analysis for Piercing Punch Profile Optimization to Prevent Tearing During Tee Pipe Burring)

  • 이영섭;김준영;강정식;홍석무
    • 소성∙가공
    • /
    • 제26권5호
    • /
    • pp.271-276
    • /
    • 2017
  • A tee is the most common pipefitting used to combine or divide fluid flow. Tees can connect pipes of different diameters or change the direction of a pipe run. To manufacture tee type of stainless steel pipe, combinations of punch piercing and burr forming have been widely used in the industry. However, such method is considerably time consuming with regard to performing empirical work necessary to attain process conditions to prevent upper end tearing of the tee product and meet target tee height. Numerous experiments have shown that the piercing profile is the main cause of defects mentioned above. Furthermore, the mold design is formed through trial and error according to pipe diameters and changes in requirements. Thus, the objective of this study was to perform piercing and burring process analysis via finite element analysis using DYNAFORM to resolve problems mentioned above. An optimization design method was used to determine the piercing punch profile. Three radii of the piercing punch (i.e., large, small, and joined radii) were selected as design variables to minimize thinning of a tee pipe. Based on results of correlation and multiple regression analyses, we developed a predictive approximation model to satisfy requirements for both thickness reduction and target height. The new piercing punch profile was then applied to actual tee forming using the developed prediction equation. Model results were found to be in good agreement with experimental results.

단부 경계조건을 고려한 매설관의 동적응답 해석 (II) (Analysis of Seismic Response of the Buried Pipeline with Pipe End Conditions (II))

  • 이병길;박병호;정진호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.328-337
    • /
    • 2005
  • This work reports results of our study on the dynamic responses of the buried pipelines both along the axial and the transverse directions under various boundary end conditions. We have considered three cases, i.e., the free ends, the fixed ends, and the fixed-free ends for the axial direction, and three more cases including the guided ends, the simply supported ends, and the supported-guided ends for the transverse direction. In order to investigate the effect of the boundary end conditions for the dynamic responses of the buried pipeline, we have devised a computer program to find the solutions of the formulae on the dynamic responses (displacements, axial strains, and bending strains) under the various boundary end conditions considered in this study. The dynamic behavior of the buried pipelines for the forced vibration is found to exhibit two different forms, a transient response and a steady state response, depending on the time before and after the transfer of a seismic wave on the end of the buried pipeline. The former is identified by a slight change in its behavior before the sinusoidal-shaped seismic wave travels along the whole length of the pipeline whereas the latter by the complete form of a sinusoidal wave when the wave travels throughout the pipeline. The transient response becomes insignificant as the wave speed increases. We have observed a resonance when the mode wavelength matches the wavelength of the seismic wave, where the mode number(k) of resonance for the axial direction is found to be $\overline{\omega}/{\pi}V+1/2$ for the fixed-free ends, $\overline{\omega}/{\pi}V+1$ for the free ends, and $\overline{\omega}/{\pi}V$ for the fixed ends, respectively. By adding 10 more modes to the mode number(k) of resonance, we were able to study all the dynamic responses of the buried pipeline for the axial direction. On the other hand, we have not been able to observe a resonance in the analysis for the transverse direction, because the dynamic responses are found to vanish after the seventh mode. From the results of the dynamic responses at the many points of the pipeline, we have found that the responses appeared to be dependent critically on the boundary end conditions. Such effects are found to be most prominent especially for the maximum values of the displacement and the strain and its position.

  • PDF

경계조건변화에 따른 동력전달관로의 동특성 (Dynamic Characteristics of Pressure Propagation According to Boundary Condition Changes in a Transmission Line)

  • 나기대;유영태;김지환
    • 한국공작기계학회논문집
    • /
    • 제11권6호
    • /
    • pp.75-82
    • /
    • 2002
  • Design for a quiet operation of fluid power system requires the understanding of noise and vibration characteristics of the system. It's not easy to analyze noise problem in hydraulic cylinder used in typical actuator Because they've got complex fluid dynamics. One of the fundamental problems associated with the hydraulic system is the pulsating flow in pipe lines, which can be tackled by the analysis under simplifying assumptions. The present study focuses on theoretic analysis and experimental study on the dynamics of laminar pulsating flow in a circular pipe. We analyze the propagation characteristics of the pressure pulse within a hydraulic pipe line taking into account the pulsating flow frequency variation. We also measure instantaneous pressure pulses within pipe line to identify the transfer functions. We conduct series of experiments to investigate the propagation characteristics of pressure pulse for various pressure of pulsating flow. The working fluid of the present study is ISO VG46 and the temperature ranges from 20 to $60^{\circ}$ with normal pressure at 4000kPa. The flow rate is measured by using an ultrasonic flow meter. Pressures at fixed upstream and downstream positions are measured concurrently. The electric signals of the pressure sensor are stored and analyzed using a system analyzer(PKE 983 series). The frequency is varied in the range of 10~500Hz. The Reynolds number is kept below 2,000. In the present study, boundary condition was varied by installing a surge tank and an orifice at the end of pipe. Experimental and theoretical results were compared each other under various boundary conditions.

모래지반에 타입된 모형 개단강관 말뚝의 지지력 분석 (Bearing Capacity of Model Open -Ended Steel Pipe Pile Driven into Sand Deposit)

  • 백규호;이종섭;이승래
    • 한국지반공학회지:지반
    • /
    • 제9권1호
    • /
    • pp.31-44
    • /
    • 1993
  • 말뚝이 설치되는 동안과 하중이 재하되는 동안에 유발되는 관내토의 거동과 관내토가 개단 말뚝의 지지력에 미치는 영향, 그리고 관내토의 하중전이 메카니즘 등을 알아보기 위하여, 개단말뚝의 단면부에 작용하는 지지력과 관내토에 의한 지지력 및 외주면마찰력을 분리하여 측정할 수 있도록 제작된 모형 개단강관말뚝과 압력조절이 가능한 토조를 이용하여 모래지반을 대상으로한 모형말뚝실험을 실시하였다. 실험결과로부터, 개단말뚝의 폐색정도는 폐색길이비(PLR)보다는 특정회수율(${\gamma}$)에 의하여 더 정화히 성의될 수 리음을 알 수 있으며, 내주면마찰력의 대부분은 말뚝 선단부로부터 말뚝내경의 3배까지의 영역에 존재하는 관내토에 의하여 발생되는 것으로 나타났다. 또한 전체 지지력에서 내주면마찰력이 차지하는 비율은 외주면마찰력이 차지하는 비율보다 상당히 크기 때문에, 개단말쪽의 지지력 산정시 내주면마찰력은 필수적으로 고려되어야 한다.

  • PDF