Browse > Article
http://dx.doi.org/10.4014/jmb.1010.10012

Effects of Diverse Water Pipe Materials on Bacterial Communities and Water Quality in the Annular Reactor  

Jang, Hyun-Jung (Division of R&D for Water, Waterworks Research Institute)
Choi, Young-June (Division of R&D for Water, Waterworks Research Institute)
Ka, Jong-Ok (Department of Agricultural Biotechnology, Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.2, 2011 , pp. 115-123 More about this Journal
Abstract
To investigate the effects of pipe materials on biofilm accumulation and water quality, an annular reactor with the sample coupons of four pipe materials (steel, copper, stainless steel, and polyvinyl chloride) was operated under hydraulic conditions similar to a real plumbing system for 15 months. The bacterial concentrations were substantially increased in the steel and copper reactors with progression of corrosion, whereas those in stainless steel (STS) and polyvinyl chloride (PVC) reactors were affected mainly by water temperature. The heterotrophic plate count (HPC) of biofilms was about 100 times higher on steel pipe than other pipes throughout the experiment, with the STS pipe showing the lowest bacterial number at the end of the operation. Analysis of the 16S rDNA sequences of 176 cultivated isolates revealed that 66.5% was Proteobacteria and the others included unclassified bacteria, Actinobacteria, and Bacilli. Regardless of the pipe materials, Sphingomonas was the predominant species in all biofilms. PCR-DGGE analysis showed that steel pipe exhibited the highest bacterial diversity among the metallic pipes, and the DGGE profile of biofilm on PVC showed three additional bands not detected from the profiles of the metallic materials. Environmental scanning electron microscopy showed that corrosion level and biofilm accumulation were the least in the STS coupon. These results suggest that the STS pipe is the best material for plumbing systems in terms of the microbiological aspects of water quality.
Keywords
Biofilm; drinking water distribution system; pipe material; PCR-DGGE;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 8  (Related Records In Web of Science)
연도 인용수 순위
1 Kalmbach, S., W. Manz, B. Bendinger, and U. Szewzyk. 2000. In situ probing reveals Aquabacterium commune as a widespread and highly abundant bacterial species in drinking water biofilms. Water Res. 34: 575-581.   DOI   ScienceOn
2 Kelly, S. T., U. Theisen, L. T. Angenent, A. S. Amand, and N. R. Pace. 2004. Molecular analysis of shower curtain biofilm microbes. Appl. Environ. Microbiol. 70: 4187-4192.   DOI   ScienceOn
3 Kim, B. R., J. E. Anderson, S. A. Mueller, W. A. Gaines, and A. M. Kendall. 2002. Literature review - efficacy of various disinfectants against Legionella in water systems. Water Res. 36: 4433-4444.   DOI   ScienceOn
4 Gagnon, G. A., K. C. O'Leary, C. J. Volk, C. Chauret, L. Stover, and R. C. Andrews. 2004. Comparative analysis of chlorine dioxide, chlorine and chloramines on bacterial water quality in model distribution systems. J. Environ. Eng. 130: 1269-1279.   DOI   ScienceOn
5 Hallam, N. B., J. R. West, C. F. Forster, J. C. Powell, and I. Spencer. 2002. The decay of chlorine associated with the pipe wall in water distribution systems. Water Res. 36: 3479-3488.   DOI   ScienceOn
6 Hass, C. N., M. Gupta, R. Chitluru, and G. Burlingame. 2002. Chlorine demand in disinfecting water mains. J. Am. Water Works Assoc. 94: 97-102.
7 Havelaar, H. H., J. F. M. Verstee, and M. During. 1990. The presence of Aeromonas in drinking water supplies in the Netherlands. Zbl. Hyg. 190: 236-256.
8 Hugenholtz, P., C. Pitulle, K. L. Hershberger, and N. R. Pace. 1998. Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180: 366-376.
9 Critchley, M. M. and H. J. Fallowfield. 2001. The effect of distribution systems bacterial biofilms on copper concentrations in drinking water. Water Sci. Technol. Water Supply 1: 247-252.
10 Ferris, M. J., G. Muyzer, and D. M. Ward. 1996. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl. Environ. Microbiol. 62: 340-346.
11 Flemming, H. C. and J. Wingender. 2001. Relevance of microbial extracellular polymeric substances (EPSs) - Part I: Structural and ecological aspects. Water Sci. Technol. 43: 1-8.
12 Frank, J. F. 2000. Microbial attachment to food and food contact surfaces. Adv. Food Nutr. Res. 43: 319-370.
13 Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115-148. In E. Stackebrandt and M. Goodfellow (eds.). Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons, Chichester, England.
14 Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipmann. 1990. Basic local alignment tool. J. Mol. Biol. 215: 403-410.   DOI
15 APHA, AWWA, WEF. 1998. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, D.C.
16 Baribeau, H., M. Prevost, R. Desjardins, and P. Lafrance. 2001. Changes in chlorine and DOX concentrations in distribution systems. J. Am. Water Works Assoc. 93: 102-114.   DOI
17 Brocca, D., E. Arvin, and H. Mosbæk. 2002. Identification of organic compounds migrating from polyethylene pipelines into drinking water. Water Res. 36: 3676-3680.
18 Camper, A. K. 1996. Factors limiting microbial growth in distribution systems: Laboratory and pilot-scale experiments. American Water Works Association Research Foundation. Denver, Colorado.
19 Costerton, J. W., P. S. Stewart, and E. P Greenberg. 1999. Bacterial biofilms: A common cause of persistent infections. Science 284: 1318-1322.   DOI
20 Kim, T. S., M. S. Kim, M. K. Jung, J. H. Ahn, M. J. Joe, K. H. Oh, M. H. Lee, M. K. Kim, and J. O. Ka. 2005. Analysis of plasmid pJP4 horizontal transfer and its impact on bacterial community structure in natural soil. J. Microbiol. Biotechnol. 15: 376-383.
21 LeChevallier, M. W., T. M Bobcock, and R. G. Lee. 1987. Examination and characterization of distribution system biofilm. Appl. Environ. Microbiol. 53: 2714-2724.
22 Norton, C. D. and M. W. LeChevallier. 2000. A pilot study of bacteriological population changes through portable water treatment and distribution. Appl. Environ. Microbiol. 66: 268-276.   DOI   ScienceOn
23 Percival, S. L., J. S. Knapp, R. Edyvean, and D. S. Wales, 1998. Biofilm, mains water and stainless steel. Water Res. 32: 2187-2201.   DOI   ScienceOn
24 Percival, S. L., J. T. Walker, and P. R. Hunter. 2000. Microbiological Aspects of Biofilms and Drinking Water, pp. 61-78. CRC Press.
25 Olson, B. H. 1982. Assessment and implications of bacterial regrowth in water distribution systems. EPA-6001/52-82-072, US EPA, Cincinnati.
26 Pedersen, K. 1990. Biofilm development on stainless steel and PVC surfaces in drinking water. Water Res. 24: 239-243.   DOI   ScienceOn
27 Niquette, P., P. Servais, and R. Savoir. 2000. Impacts of pipe materials on densities of fixed bacterial biomass in a drinking water distribution system. Water Res. 34: 1952-1956.   DOI   ScienceOn
28 Noyce, J. O., H. Michels, and C. W. Keevil. 2007. Inactivation of influenza A virus on copper versus stainless steel surface. Appl. Environ. Microbiol. 73: 2748-2750.   DOI   ScienceOn
29 Rebekka, R. E. A. and K. Killham. 2002. Survival of Escherichia coli O157:H7 in private drinking water wells: Influences of protozoan grazing and elevated copper concentrations. FEMS Microbiol. Lett. 216: 117-122.   DOI   ScienceOn
30 Norton, C. D., M. W. LeChevallier, and J. O. Falkinham III. 2004. Survival of Mycobacterium avium in a model distribution system. Water Res. 38: 1457-1466.   DOI   ScienceOn
31 Rogers, J., A. B. Dowsett, P. J. Dennis, J. V. Lee, and C. W. Keevil. 1994. Influence of temperature and plumbing material selection on biofilm formation and growth of Legionella pneumophila in a model potable water system containing complex microbial flora. Appl. Environ. Microbiol. 60: 1585-1592.
32 Lehtola, M. J., I. T. Miettinen, I. T. Keinanen, T. K. Kekki, O. Laine, A. Hirvonen, T. Vartiainen, and P. J Martikainen. 2004. Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes. Water Res. 38: 3769-3779.   DOI   ScienceOn
33 Liu, W., H. Wu, Z. Wang, S. L. Ong, J. Y. Hu, and W. J. Ng. 2002. Investigation of assimilable organic carbon (AOC) and bacterial regrowth in drinking water distribution system. Water Res. 36: 891-898.   DOI   ScienceOn
34 Lechevallier, M. W., C. D. Lowry, R. G. Lee, and D. L. Gibbon. 1993. Examining the relationship between iron corrosion and the disinfection of biofilm bacteria. J. Am. Water Works Assoc. 85: 111-123.   DOI
35 Lehtola, M. J., I. T. Miettinen, A. Hirvonen, T. Vartiainen, and P. J. Martikainen. 2005. Pipeline materials modify the effectiveness of disinfectants in drinking water distribution systems. Water Res. 39: 1962-1971.   DOI   ScienceOn
36 Lyautey, E., B. Lacoste, L. Ten-Hage, J. L. Rols, and F. Garabetian. 2005. Analysis of bacterial diversity in river biofilms using 16S rDNA PCR-DGGE: Methodological settings and fingerprints interpretation. Water Res. 39: 380-388.   DOI   ScienceOn
37 Muyer, G. 1999. DGGE/TGGE method for identifying genes from natural ecosystems. Curr. Opin. Microbiol. 2: 317-322.   DOI   ScienceOn
38 Schwartz, T., S. Hoffmann, and U. Obst. 1998. Formation and bacterial composition of young, natural biofilms obtained from public bank-filtered drinking water systems. Water Res. 32: 2787-2797.   DOI   ScienceOn
39 Sharp, P. R., A. K. Camper, J. J. Crippen, O. D. Schneider, and S. Leggiero. 2001. Evaluation of drinking water biostability using biofilm methods. J. Environ. Eng. 127: 403-410.   DOI   ScienceOn
40 Snoeyink, V. L. and I. Wagner. 1996. Principles of corrosion of water distribution systems. In: Internal Corrosion of Water Distribution Systems, 2nd Ed. AWWARF and AWWA, Denver, Colo.
41 Schock, M. R. 1990. Internal corrosion and deposition control. In F. W. Pontius (ed.). Water Quality and Treatment, 4th Ed. McGraw-Hill, New York.
42 von Reyn, C. F., R. D. Waddell, T. Eaton, R. D. Arbeit, J. N. Maslow, T. W Barber, et al. 1993. Isolation of Mycobacterium avium complex from water in the United States, Finland, Zaire, and Kenya. J. Clin. Microbiol. 31: 3227-3230.
43 Teitzel, G. M. and M. R. Parsek. 2003. Heavy metal resistance of biofilm and planktonic Pseudomonas aerusinosa. Appl. Environ. Microbiol. 69: 2313-2320.   DOI   ScienceOn
44 Van der Kooij, D. 1992. Assimilable organic carbon as an indicator of bacterial growth. J. Am. Water Works Assoc. 84: 57-65.   DOI
45 Van der Kooij, D., H. R. Veenendaal, C. Baars-Lorist, D. W. Van der Klift, and Y. C. Drost. 1995. Biofilm formation on surfaces of glass and Teflon exposed to treated water. Water Res. 29: 1655-1662.   DOI   ScienceOn
46 Ridgway, H. F. and B. H. Olson. 1981. Scanning electron microscope evidence for bacterial colonization of a drinkingwater distribution system. Appl. Environ. Microbiol. 41: 274-287.
47 Zacheus, O. M., E. K. Iivanainen, T. K. Nissinen, M. J. Lehtola, and P. J. Martikainen. 2000. Bacterial biofilm formation on polyvinyl chloride, polyethylene and stainless steel exposed to ozonated water. Water Res. 34: 63-70.   DOI   ScienceOn
48 Van der Kooij, D., H. R. Veenendaal, and W. J. H. Scheffer. 2005. Biofilm formation and multiplication of Legionella in a model warm water system with pipes of copper, stainless steel and cross-linked polyethylene. Water Res. 39: 2789-2795.   DOI   ScienceOn
49 Van der Kooij, D., A. Visser, and W. A. M. Hijnen. 1982. Determining the concentration of easily assimilable organic carbon in drinking water. J. Am. Water Works Assoc. 74: 540-545.   DOI