• Title/Summary/Keyword: Pile driving analyzer

Search Result 26, Processing Time 0.022 seconds

Model Tests on a Plastic Pipe Pile for the Analysis of Noise, Energy Transfer Effect and Bearing Capacity due to Hammer Cushion Materials (해머 쿠션 재질에 따른 모형말뚝의 소음, 에너지 전달효율 및 지지력 분석)

  • Lim, Yu-Jin;Hwang, Kwang-Ho;Park, Young-Ho;Lee, Jin-Gul
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.33-43
    • /
    • 2006
  • Driving tests using model plastic piles with different hammer cushion materials were performed in order to evaluate the efficiency of energy transfer ratio from the hammer, degree of vibration of the surrounding ground and noise due to impacting. A small pile driving analyzer (PDA) was composed using straingages and Hopkinson bar which is measuring force signal and pile-head velocity. The hammer cushion (cap block) materials used for the model driving tests were commercial Micarta, plywood, polyurethane, rubber (SBR) and silicone rubber. The highest energy transfer ratio was obtained from Micarta in the same soil and driving conditions. Micarta was followed by polyurethane, plywood, rubber and silicone in descending order. The more efficient energy transfdr ratio of the hammer cushion materials became, the bigger average noisy (sound) level was found. In addition, Micarta and polyurethane provided bigger bearing capacities than other materials compared in the same soil and driving conditions in which the static loading tests were performed at the end of driving.

Case Study on the Characteristics of Vertical Bearing Capacity for Steel Pipe Pile Installed by PRD (PRD 강환 말뚝의 연직지지력 특성에 관한 사례 연구)

  • 최용규;정창규;정성기;김동철;정태만
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.225-232
    • /
    • 1999
  • Construction case of PRD (Percussion Rotary Drill) pipe pile and matters to be attended in construction of PRD pile were reviewed. The compressive and uplifting static pile load tests for PRD piles were performed and, also, analysis by Pile Driving Analyzer was done. Based on these results, bearing components in each resisting part (that is: steel toe, external skin, and internal skin) were measured separately. The measured resisting force was compared to the value calculated by the estimated formula. The pile capacity was mobilized in steel toe area and the external skin friction and the internal friction were not produced. Thus, it could be considered that toe of PRD pile should be supported in hard bearing stratum (for example, the fresh soft rock).

  • PDF

Recycling of In-site waste soil material to fill a hollow between PHC pile and Earthen wall

  • Jang, Myung-Houn;Choi, Hee-Bok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.510-517
    • /
    • 2012
  • This study evaluated the recycling potential of in-site waste soil as pile back filling material (PBFM). We performed experiments to check workability, segregation resistance, bond strength, direct shear stress test, and dynamic load test using in-site waste soil in coastal areas. We found that PBFM showed better performance than general cement paste in terms of workability, segregation resistance, and bond strength. On the other hand, the structural performance of PBFM was slightly lower than that of general cement paste due to the skin friction force of pile by Pile Driving Analyzer and direct shear stress. However, because this type of performance degradation in terms of structure can be improved through the use of piles with larger diameter or by changing the type of pile, considering the economics and environment, we considered that recycling of PBFM has sufficient value.

Dynamic analyses and field observations on piles in Kolkata city

  • Chatterjee, Kaustav;Choudhury, Deepankar;Rao, Vansittee Dilli;Mukherjee, S.P.
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.415-440
    • /
    • 2015
  • In the present case study, High Strain Dynamic Testing of piles is conducted at 3 different locations of Kolkata city of India. The raw field data acquired is analyzed using Pile Driving Analyzer (PDA) and CAPWAP (Case Pile Wave Analysis Programme) computer software and load settlement curves along with variation of force and velocity with time is obtained. A finite difference based numerical software FLAC3D has been used for simulating the field conditions by simulating similar soil-pile models for each case. The net pile displacement and ultimate pile capacity determined from the field tests and estimated by using numerical analyses are compared. It is seen that the ultimate capacity of the pile computed using FLAC3D differs from the field test results by around 9%, thereby indicating the efficiency of FLAC3D as reliable numerical software for analyzing pile foundations subjected to impact loading. Moreover, various parameters like top layers of cohesive soil varying from soft to stiff consistency, pile length, pile diameter, pile impedance and critical height of fall of the hammer have been found to influence both pile displacement and net pile capacity substantially. It may, therefore, be suggested to include the test in relevant IS code of practice.

Prediction of End Bearing Capacity for Pre-Bored Steel Pipe Piles Using Instrumented Spt Rods (SPT 에너지효율 측정 롯드를 이용한 매입말뚝의 선단지지력 예측)

  • Nam, Moon S.;Park, Young-Ho;Park, Yong-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.105-111
    • /
    • 2013
  • The standard penetration test (SPT) has been widely used because of its usability, economy, and many correlations with soil properties among other factors. In SPT, hammer energy is an important factor to evaluate and calibrate N values. To measure hammer energy, an instrumented SPT rod was developed considering that stress waves transferring on rods during SPT driving are the same as stress waves transferring on piles due to pile driving. Using this idea, an instrumented SPT rod with a pile driving analyzer was applied as a pile capacity prediction tool in this study. In order to evaluate this method, SPT and dynamic cone tests with the instrumented SPT rod were conducted and also 2 pile load tests were performed on pre-bored steel pipe piles at the same test site. End bearings were predicted by CAPWAP analysis on force and velocity waves from dynamic cone penetration tests and SPT. Comparing these predicted end bearings with static pile load tests, a new prediction method of the end bearing capacity using the instrumented SPT rod was proposed.

Axial Bearing Characteristics of Tip-transformed PHC Piles through Field Tests (현장검증시험에 의한 선단변형 PHC말뚝들의 연직하중 지지특성에 관한 연구)

  • Choi, Yongkyu;Kim, Myunghak
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.107-119
    • /
    • 2018
  • PHC piles, extension-plate attached PHC piles, and steel pipe attached PHC piles were installed in field test site. Axial compressive static load tests including load distribution test and Pile Driving Analyzer (after driving) were done on the tip-transformed PHC piles and the grouted tip-transformed PHC piles. Load-displacement curves of three different type of PHC piles, which are PHC pile (TP-1), extension plate attached PHC pile (TP-2) and steel pipe attached PHC pile (TP-3), showed almost the same behavior. Thus bearing capacity increase effect of the tip-transformed PHC piles was negligible. Share ratio of side resistance and end bearing resistance for PHC pile, extension plate attached PHC pile, and steel pipe attached PHC pile were 95.8% vs. 4.2%, 95.6% vs. 4.4%, and 97.8% vs. 2.2% respectively.

A Case Study on the Measurement and Estimation of Bearing Capacity of Large Diameter Bored Pile (대구경 현장타설말뚝의 지지력 측정 사례연구)

  • 이원제;정훈준;이우진;장기수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.285-292
    • /
    • 2000
  • Though there has been increasing use of large diameter drilled shaft as a foundation structure of bridges, current practice for quality control is to confirm the minimum required load carrying capacity during construction stage. For economic and appropriate design of drilled shaft, it is necessary to evaluate the load transfer mechanism by pile load tests during initial stage of construction and to use the test results as a feedback to a revision of initial design. In this paper, results of load tests peformed at several domestic sites are presented to investigate the load transfer characteristics of large diameter drilled shaft. It was found that most of the load on piles is sustained by shaft friction and that only small portion of the load reaches the bottom of the drilled shaft. Some test results of drilled shaft by Pile Driving Analyzer performed at same sites are also presented to compare the load transfer characteristics interpreted from static pile load tests.

  • PDF

SPT Rod Energy Ratios for Three Types of SPT Hammers (표준관입시험 해머의 종류에 따른 롯드 에너지 전달률)

  • An, Shin-Whan;Lee, Won-Je;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.3
    • /
    • pp.119-129
    • /
    • 2000
  • 국내에서 가장 많이 사용되는 현장조사방법인 표준관입시험의 결과로 얻어지는 N값에 대해 가장 큰 영향을 미치는 롯드 에너지 전단률(깽 Energy Ratio)을 지반조건이 상이한 3개 현장에서 항타분석기(Pile Driving Analyzer)를 이용하여 실측하였다. 에너지 전달률에 영향을 미치는 요인들 중엣 해머의 종류, 로프의 상태, 자아틀에 감은 횟수 등의 조건을 달리하여 롯드 에너지 전달률에 미치는 영향을 측정/분석하였다. 실험결과에 의하면 도넛해머, 안전해머, 개량형 도넛해머(Modified Automatic Donut Hammer)는 롯드에너지 전달률이 각각42%, 66%, 57% 정도로 측정되었으며 로프의 상태와 자아틀에 감은 횟수는 상대적으로 영향이 적은 것으로 측정되었다. 실험결과를 바탕으로 실측된 N값을 해머의 이론적 위치에너지의 60%에 해당하는 에너지가 롯드에 전달되었을 때의 N값(N60)으로 변환하기 위한 식을 제안하였다.

  • PDF

The Hammer Energy Delivered to the Drilling Rod in the SPT 1 (표준관입시험시 롯드에 전달되는 해머의 낙하에너지 평가 1)

  • 조성민;정종홍;김동수;이우진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.469-476
    • /
    • 2001
  • The Ν-value in the standard penetration test(SPT) is affected by the magnitude of the rod penetration energy transmitted from the falling hammer as well as the geotechnical characteristics of the ground. Understanding of the striking energy efficiency in the SPT equipment is getting important for that reason. The energy efficiencies of the doughnut hammer with the hydraulic lift system and the automatic trip hammer system were investigated through field tests using the instrumented rod and wave-signal acquisition systems including the pile driving analyzer(PDA) . The rod energy ratio, ΕR$\_$r/ was defined as the ratio of the energy delivered to the drilling rod to the potential free-fall energy of the hammer. It appears that the type of the hammer and lift/drop system had a strong influence on the energy transfer mechanism and ΕR$\_$r/ also varies according to the energy instrumentation system and the analysis methods.

  • PDF

The Hammer Energy Delivered to the Drilling Rod in the SPT 2 (표준관입시험시 롯드에 전달되는 해머의 낙하에너지 평가 2)

  • 조성민;정종흥;이우진;김동수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.71-78
    • /
    • 2002
  • The N-value from the standard penetration test(SPT) is affected by the magnitude of the rod penetration energy transmitted from the falling hammer as well as the geotechnical characteristics of the ground. Understanding of the striking energy efficiency in the SPT equipment is getting important for that reason. The energy efficiencies of the various type of equipment were investigated through field tests using the instrumented rod and wave-signal acquisition systems including the pile driving analyzer(PDA). The rod energy ratio, ERr was defined as the ratio of the energy delivered to the drilling rod to the potential free-fall energy of the hammer. It appears that the type of the hammer and lift/drop system had a strong influence on the energy transfer mechanism and ERr also varies according to the energy instrumentation system and the analysis methods.

  • PDF