DOI QR코드

DOI QR Code

Axial Bearing Characteristics of Tip-transformed PHC Piles through Field Tests

현장검증시험에 의한 선단변형 PHC말뚝들의 연직하중 지지특성에 관한 연구

  • Choi, Yongkyu (Dept. of Civil, Environmental and Urban Engrg., Kyungsung Univ.) ;
  • Kim, Myunghak (Dept. of Civil & Urban Engrg., Inje Univ.)
  • 최용규 (경성대학교 공과대학 건설환경도시공학부) ;
  • 김명학 (인제대학교 토목도시공학부)
  • Received : 2018.11.22
  • Accepted : 2018.11.28
  • Published : 2018.11.30

Abstract

PHC piles, extension-plate attached PHC piles, and steel pipe attached PHC piles were installed in field test site. Axial compressive static load tests including load distribution test and Pile Driving Analyzer (after driving) were done on the tip-transformed PHC piles and the grouted tip-transformed PHC piles. Load-displacement curves of three different type of PHC piles, which are PHC pile (TP-1), extension plate attached PHC pile (TP-2) and steel pipe attached PHC pile (TP-3), showed almost the same behavior. Thus bearing capacity increase effect of the tip-transformed PHC piles was negligible. Share ratio of side resistance and end bearing resistance for PHC pile, extension plate attached PHC pile, and steel pipe attached PHC pile were 95.8% vs. 4.2%, 95.6% vs. 4.4%, and 97.8% vs. 2.2% respectively.

PHC말뚝, 확장판 선단부착 PHC말뚝, 강관 선단부착 PHC말뚝을 현장 시험 부지에서 시험시공하였다. 이들 선단변형 PHC말뚝들에 대하여 하중전이측정이 수반된 연직압축정재하시험을 실시하였으며 시공직후 항타후 동재하시험을 수행하였다. 또한 선단부만 그라우팅한 선단변형PHC말뚝에 대한 연직압축정재하시험도 실시하였다. 3가지 다양한 선단말뚝들 즉, PHC말뚝, 확장판 선단부착 PHC말뚝, 강관 선단부착 PHC말뚝의 하중-침하량 거동은 거의 동일한 양상을 나타내었다. 따라서 말뚝이 선단지지층에 근입된 길이가 동일하고 말뚝 본체의 직경이 동일할 경우 확장판 선단부착 PHC말뚝 및 강관 선단부착 PHC말뚝의 지지력 증대 효과는 거의 없는 것으로 나타났다. 최종재하하중단계에서 PHC말뚝, 확장판 선단부착 PHC말뚝, 강관 선단부착 PHC말뚝의 주면마찰력은 각각 전체 재하하중의 95.8%, 95.6%, 97.8%를 분담하였으며, 선단지지력은 전체 재하하중의 4.2%, 4.4%, 2.2%를 분담하였다.

Keywords

GJBGC4_2018_v34n11_107_f0001.png 이미지

Fig. 1. Plan of test piles and boreholes

GJBGC4_2018_v34n11_107_f0002.png 이미지

Fig. 2. Soil profiles

GJBGC4_2018_v34n11_107_f0003.png 이미지

Fig. 3. N value profile

GJBGC4_2018_v34n11_107_f0004.png 이미지

Fig. 4. Plan of test and reaction piles

GJBGC4_2018_v34n11_107_f0005.png 이미지

Fig. 5. Dimensions of test piles

GJBGC4_2018_v34n11_107_f0006.png 이미지

Fig. 6. Contruction procedure of SDA method (Jo, 2006)

GJBGC4_2018_v34n11_107_f0007.png 이미지

Fig. 7. Splice of reaction pile and tension steel

GJBGC4_2018_v34n11_107_f0008.png 이미지

Fig. 8. Load vs. displacement curves of static load test

GJBGC4_2018_v34n11_107_f0009.png 이미지

Fig. 9. Load vs. displacement curves of tip-transformed PHC piles

GJBGC4_2018_v34n11_107_f0010.png 이미지

Fig. 10. Axial load distribution of tip-transformed PHC piles

GJBGC4_2018_v34n11_107_f0011.png 이미지

Fig. 11. Comparision of end bearing resistance

GJBGC4_2018_v34n11_107_f0012.png 이미지

Fig. 12. Load vs. displacement curves of the grouted end piles

GJBGC4_2018_v34n11_107_f0013.png 이미지

Fig. 13. Estimation of end bearing resistance using PDA(EOID)

Table 1. Geotechnical profile of the test site

GJBGC4_2018_v34n11_107_t0001.png 이미지

Table 2. Field test results

GJBGC4_2018_v34n11_107_t0002.png 이미지

Table 3. Plan of field test for tip-transformed PHC piles

GJBGC4_2018_v34n11_107_t0003.png 이미지

Table 5. Estimations of ultimate bearing capacity for the tip-transformed PHC piles

GJBGC4_2018_v34n11_107_t0004.png 이미지

Table 4. Estimation of ultimate bearing capacities by numerical analysis

GJBGC4_2018_v34n11_107_t0005.png 이미지

References

  1. Baekkyung G&C Corp. (2017), Report of PHC piles for various end bearing types and splices, Dynamic test report, FR-PDABK20170623- A02, 2017. 08., pp.1-697 (in Korean).
  2. Choi, Y. K. (2017), Report of static pile load test including load distribution test for the axial load behavior with various end bearing type PHC piles, KGS, Report No. KGS09-038, 2017. 9., pp.1-51 (in Korean).
  3. Choi, Y. K., Kwon, O. K., Lee, W. J., and Yeo, K. K. (2017), Report for axial compressive load behavior of PHC piles with various end bearing types, KGS, Report No. KGS09-038, 2017. 9., pp.1-160 (in Korean).
  4. Cheon, B. S., Yoo, C. S., and Lee, W. J. (2009), Pile load test for EXT-PHC pile field application, KGS, Report No. KGS09-038, pp.1-71 (in Korean).
  5. Jeong, S. S., Kim, S. I., and Kim, H. T. (2011), Installation and design guide for EXT-PHC pile (Final report), KGS, Report No. KGS09-038, 2011. 1., pp.1-71 (in Korean).
  6. Jo, C. H. (2006), Bored pile method, ENG Book (in Korean).
  7. KICT (2012), Behavior and application of tip-extension PHC pile (in Korean).
  8. Kim, M. H. (2018a), Safe installation method project for extension plate PHC piles and bolt spliced PHC piles (Final report), Inje IACF, 2018. 9., pp.1-341 (in Korean).
  9. Kim. M. H. (2018b), Safe installation method project for extension plate PHC piles and bolt spliced PHC piles (Final report) Appendix, Inje IACF, 2018. 9., pp.A-1-1-A-13-48 (in Korean).
  10. Korea Land & Housing Corp. (2017a), LH Special specification 23023 Precast pile foundation (The Bored Pile), pp.1-13.
  11. Korea Land & Housing Corp. (2017b), LH Special specification 23021 Precast pile foundation (The Driven Pile), pp.1-13.
  12. Paek, K. H. (2013), End bearing capacity increase technology for the bored pile using Smartpile, Architectural structure, 2013. 9.10, Vol.20, No.5, pp.72-78 (in Korean).
  13. Professional Engineer's office Veesang (2017), Geotechnical investigation report for PHC piles with various end bearing types, 2017. 3 (in Korean).
  14. Yonsei Univ. (2009), Behavior characteristics of no-welding composite PHC piles through pile load test and numerical analysis, SampyoENC (in Korean).