• Title/Summary/Keyword: Piezoelectric coefficient

Search Result 282, Processing Time 0.029 seconds

A Study on Piezoelectric and Strain Properties Using PMN-PT-PZ Ceramics with Ba Substitution (Ba 치환된 PMN-PT-PZ계 세라믹스의 압전 및 변위특성)

  • Ji, Seung-Han;Lee, Neung-Heon;Park, Kwang-Hyun;Park, Chong-Gook;Lee, Deok-Chool
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1113-1115
    • /
    • 1993
  • Piezoelectric Actuator samples were fabricated using PMN-PT-PZ ceramics with Barium substitution, and the strain properties of them were investigated. The tartest Piezoelectric coefficient and electromechanical coupling coefficient were observed at the sintering temperature $1250^{\circ}C$, Barium 5mol%. In the case of Multilayered specimens, they showed considerable strain and small hysteresis than single round type.

  • PDF

Prediction of Piezoelectric Coefficients of PZT-Polymer Composites by Finite Element Method (유한요소법을 이용한 복합압전체의 압전계수예측)

  • 신병철;윤만순;임종인;강영훈;장현명;박병학;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.1
    • /
    • pp.23-26
    • /
    • 1990
  • A model is developed based on the Finite Element Method (FEM) which provides a more accurate prediction of the hydrostatic piezoelectric coefficient of 1-3 or 3-1 PZT-Polymer composites than does the series/parallel model.

  • PDF

Effect of Process Parameter on Piezoelectric Properties of PZT Thin films (PZT 박막의 압전특성에 미치는 공정변수의 효과)

  • 김동국;지정범
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.12
    • /
    • pp.1060-1064
    • /
    • 2002
  • We have studied the effect of crystallization temperature, composition and film thickness, which are the fundamental processing parameters of lead zirconate titanate(PZT) thin film fabrication, in the respect of the piezoelectric properties by our pneumatic loading method(PLM). A great deal of research has been done in the field of characterization for piezoelectric thin films after the first report on the measurement for the piezoelectric coefficient of thin films in 1990. Even though the piezoelectric properties of thin films are very critical factors in the micro-electro mechanical system(MEMS) and thin film sensor devices, a few reports for the piezoelectric characterization are provided for the last decade unlikely the bulk piezoelectric devices. We have found that the piezoelectric properties of thin films are improved as the increase of crystallization temperature up to 750$\^{C}$ and this behavior can be also explained by the analysis of dielectric polarization hysteresis loop, X-ray diffraction and scanning electron microscopy. The effect of Zr/Ti composition has been also studied. This gives us the fact that the maximum piezoelectricity is found near Morphotropic Phase Boundary(MPB) as bulk PZT system does.

Effect of Dimension Control of Piezoelectric Layer on the Performance of Magnetoelectric Laminate Composite

  • Cho, Kyung-Hoon
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.611-614
    • /
    • 2018
  • Laminate composites composed of $0.95Pb(Zr_{0.52}Ti_{0.48})O_3-0.05Pb(Mn_{1/3}Sb_{2/3})O_3$ piezoelectric ceramic and Fe-Si-B based magnetostrictive amorphous alloy are fabricated, and the effect of control of the areal dimensions and the thickness of the piezoelectric layer on the magnetoelectric(ME) properties of the laminate composites is studied. As the aspect ratio of the piezoelectric layer and the magnetostrictive layer increases, the maximum value of the ME voltage coefficient(${\alpha}_{ME}$) increases and the intensity of the DC magnetic field at which the maximum ${\alpha}_{ME}$ value appears decreases. Moreover, as the thickness of the piezoelectric layer decreases, ${\alpha}_{ME}$ tends to increase. The ME composites exhibit ${\alpha}_{ME}$ values higher than $1Vcm^{-1}Oe^{-1}$ even at the non-resonance frequency of 1 kHz. This study shows that, apart from the inherent characteristics of the piezoelectric composition, small thicknesses and high aspect ratios of the piezoelectric layer are important dimensional determinants for achieving high ME performance of the piezoelectric-magnetostrictive laminate composite.

Dielectric and Piezoelectric Properties of Piezoceramics/Polymer 3-3 Composites for Hydrophone Applications (수중청음기용 Piezoceramics/Polymer 3-3 Composites의 유전 및 압전 특성)

  • Park, J.H.;SaGong, G.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.730-732
    • /
    • 1992
  • In this study, piezoceramics/polymer composites with 3-3 connectivity were made by BURPS(Burnout Plastic Sphere) technique with PZT ceramics and PMMA sphere(50 - 80${\mu}m$). And the dielectric and piezoelectric properties dependent on the PZT vol.% were investigated. The dielectric constant($K_{33}$) of 3-3 composites is increased almost linearly with increasing the PZT vol.%, while piezoelectric coefficient($d_{33}$) is slightly increased.

  • PDF

Transverse Piezoelectric Coefficient ($e_{31,f}$) of Thick PZT films Fabricated by Sol-Gel Method with Thicknesses, Electrode Shapes and Poling Process (Sol-Gel 법으로 제조된 후막 PZT의 두께, 전극형상 및 분극 공정에 따른 $e_{31,f}$ 특성)

  • Park, Joon-Shik;Yang, Seong-Jun;Park, Kwang-Bum;Yoon, Dae-Won;Park, Hyo-Derk;Kim, Sung-Hyun;Kang, Sung-Goon;Choi, Tae-Hoon;Lee, Nak-Kyu;Na, Kyoung-Hoan
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1326-1331
    • /
    • 2003
  • Thick PZT films are required for the cases of micro actuators and sensors with high driving force, high breakdown voltage and high sensitivity, and so on. In this work, thick PZT films were fabricated by Sol-Gel multi-coating method. Total 8 types of samples using thick PZT films with thicknesses, about $1{\mu}m$ and $2{\mu}m$, and Pt top electrodes shapes for measuring transverse piezoelectric coefficient ($e_{31,f}$) were fabricated using MEMS processes. They were characterized by fabricated e31,f measurement system before and after poling. $e_{31,f}$ values of samples after poling were higher than before poling. Those of $2{\mu}m$ thick PZT films were also higher than $1{\mu}m$ thick PZT films. And those with long electrodes as top electrodes were also higher than shorter.

  • PDF

Optimal Friction Materials of Tiny Piezoelectric Ultrasonic Linear Motor

  • Lee, Kyong-Jae;Nahm, Sahn;Kang, Jin-Kyu;Ko, Hyun-Phill;Kang, Chong-Yun;Kim, Hyun-Jae;Yoon, Seok-Jin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.249-255
    • /
    • 2005
  • In recent years, a novel tiny piezoelectric linear motor converting a radial mode vibration to a longitudinal mode vibration driven by the impact force has been developed for a camera optical module. The tiny piezoelectric motor is consisted of a shaft, mobile element, and piezoelectric transducer. In this work, the frictional coefficient and static friction force of the interface between the shaft and the mobile element have been investigated according to their respective materials. It was found that two combinations, namely Pyrex glass or stainless steel for the shaft and stainless steel (SUS) for the mobile element, exhibited good dynamic behaviors in the tiny ultrasonic linear motor, which was newly developed based on operating concepts based on Newton's law.

The Dumb-bell Shaped Magnetostrictive/Piezoelectric Transducer

  • Li, Jianzhong;Wen, Yumei;Li, Ping
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.461-465
    • /
    • 2011
  • Traditional magnetostrictive/piezoelectric laminate composites are generally in the regular geometries such as rectangles or disks. To explore properties of the irregular geometry magnetostrictive/piezoelectric transducer in the fundamental resonant frequency, a step dumb-bell shaped Magnetoelectric (ME) transducer is presented in this study. Both analytical and experimental investigations are carried out for the dumb-bell shaped transducer in the fundamental frequency. Comparing with the traditional rectangular transducer, the theory shows the resonant frequency of dumb-bell shaped transducer is reduced 31%, and the experiment gives the result of that is 37% which is independent of dc magnetic fields. The ratio of magnetoelectric voltage coefficient (MEVC) between the dumb-bell shaped and rectangular shaped transducers in theory is 66% comparing with that of in experiment is varying from 140% to 33% when the dc field is increased from 0 Oe to 118 Oe.

Approximate evaluations and simplified analyses of shear- mode piezoelectric modal effective electromechanical coupling

  • Benjeddou, Ayech
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.275-302
    • /
    • 2015
  • Theoretical and numerical assessments of approximate evaluations and simplified analyses of piezoelectric structures transverse shear modal effective electromechanical coupling coefficient (EMCC) are presented. Therefore, the latter is first introduced theoretically and its approximate evaluations are reviewed; then, three-dimensional (3D) and simplified two-dimensional (2D) plane-strain (PStrain) and plane-stress (PStress) piezoelectric constitutive behaviors of electroded shear piezoceramic patches are derived and corresponding expected short-circuit (SC) and open-circuit (OC) frequencies and resulting EMCC are discussed; next, using a piezoceramic shear sandwich beam cantilever typical benchmark, a 3D finite element (FE) assessment of different evaluation techniques of the shear modal effective EMCC is conducted, including the equipotential (EP) constraints effect; finally, 2D PStrain and PStress FE modal analyses under SC and OC electric conditions, are conducted and corresponding results (SC/OC frequencies and resulting effective EMCC) are compared to 3D ones. It is found that: (i) physical EP constraints reduce drastically the shear modal effective EMCC; (ii) PStress and PStrain results depend strongly on the filling foam stiffness, rendering inadequate the use of popular equivalent single layer models for the transverse shear-mode sandwich configuration; (iii) in contrary to results of piezoelectric shunted damping and energy harvesting popular single-degree-of-freedom-based models, transverse shear modal effective EMCC values are very small in particular for the first mode which is the common target of these applications.