DOI QR코드

DOI QR Code

Effect of Dimension Control of Piezoelectric Layer on the Performance of Magnetoelectric Laminate Composite

  • Cho, Kyung-Hoon (School of Materials Science and Engineering, Kumoh National Institute of Technology)
  • Received : 2018.08.24
  • Accepted : 2018.09.29
  • Published : 2018.11.27

Abstract

Laminate composites composed of $0.95Pb(Zr_{0.52}Ti_{0.48})O_3-0.05Pb(Mn_{1/3}Sb_{2/3})O_3$ piezoelectric ceramic and Fe-Si-B based magnetostrictive amorphous alloy are fabricated, and the effect of control of the areal dimensions and the thickness of the piezoelectric layer on the magnetoelectric(ME) properties of the laminate composites is studied. As the aspect ratio of the piezoelectric layer and the magnetostrictive layer increases, the maximum value of the ME voltage coefficient(${\alpha}_{ME}$) increases and the intensity of the DC magnetic field at which the maximum ${\alpha}_{ME}$ value appears decreases. Moreover, as the thickness of the piezoelectric layer decreases, ${\alpha}_{ME}$ tends to increase. The ME composites exhibit ${\alpha}_{ME}$ values higher than $1Vcm^{-1}Oe^{-1}$ even at the non-resonance frequency of 1 kHz. This study shows that, apart from the inherent characteristics of the piezoelectric composition, small thicknesses and high aspect ratios of the piezoelectric layer are important dimensional determinants for achieving high ME performance of the piezoelectric-magnetostrictive laminate composite.

Keywords

References

  1. C. W. Nan, M. I. Bichurin, S. Dong, D. Viehland and G. Srinivasan, J. Appl. Phys., 103, 031101 (2008). https://doi.org/10.1063/1.2836410
  2. G. Srinivasan, Annu. Rev. Mater. Res., 40, 153 (2010). https://doi.org/10.1146/annurev-matsci-070909-104459
  3. M. Fiebig, J. Phys. D: Appl. Phys., 38, R123 (2005). https://doi.org/10.1088/0022-3727/38/8/R01
  4. C. W. Nan, G. Liu, Y. Lin and H. Chen, Phys. Rev. Lett., 94, 197203 (2005). https://doi.org/10.1103/PhysRevLett.94.197203
  5. V. Annapureddy, M. Kim, H. Palneedi, H.-Y. Lee, S.-Y. Choi, W.-H. Yoon, D.-S. Park, J.-J. Choi, B.-D. Hahn, C.-W. Ahn, J.-W. Kim, D.-Y. Jeong, J. Ryu, Adv. Energy Mater., 6, 1601244 (2016). https://doi.org/10.1002/aenm.201601244
  6. J. Ryu, A. V. Carazo, K. Uchino and H. E. Kim, Jpn. J. Appl. Phys., 40, 4948 (2001). https://doi.org/10.1143/JJAP.40.4948
  7. R. A. Islam and S. Priya, Integr. Ferroelectr., 82, 1 (2006). https://doi.org/10.1080/10584580600872976
  8. Y. B. Kamble, S. S. Chougule and B. Chougule, J. Alloy Compd., 476, 733 (2009). https://doi.org/10.1016/j.jallcom.2008.09.156
  9. J. W. Nie, G. Y. Xu, Y. Yang and C. W. Cheng, Mater. Chem. Phys., 115, 400 (2009). https://doi.org/10.1016/j.matchemphys.2008.12.011
  10. Y. J. Li, X. M. Chen, Y. Q. Lin and Y. H. Tang, J. Eur. Ceram. Soc., 26, 2839 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.06.028
  11. D. R. Patil and B. K. Chougule, J. Alloy Compd., 458, 335 (2008). https://doi.org/10.1016/j.jallcom.2007.03.088
  12. S. T. Zhang, L. Y. Ding, M. H. Lu, Z. L. Luo and Y. F. Chen, Solid State Comm., 148, 420 (2008). https://doi.org/10.1016/j.ssc.2008.09.026
  13. Y. Wang, D. Gray, D. Berry, J. Gao, M. Li, J. Li and D. Viehland, Adv. Mater., 23, 4111 (2011). https://doi.org/10.1002/adma.201100773
  14. K.-H. Cho, C.S. Park and S. Priya, Appl. Phys. Lett., 97, 182902 (2010). https://doi.org/10.1063/1.3511285
  15. Z. Fang, S. G. Lu, F. Li, S. Datta, Q. M. Zhang and M. El Tahchi, Appl. Phys. Lett., 95, 112903 (2009). https://doi.org/10.1063/1.3231614
  16. H. Palneedi, S.-M. Na, G.-T. Hwang, M. Peddigari, K. W. Shin, K. H. Kim and J. Ryu, J. Alloy Compd., 765, 764 (2018). https://doi.org/10.1016/j.jallcom.2018.05.122
  17. R. E. Newnham, Properties of Materials: Anisotropy, Symmetry, Structure, Oxford University Press Inc., New York (2005).