Browse > Article
http://dx.doi.org/10.4283/JMAG.2011.16.4.461

The Dumb-bell Shaped Magnetostrictive/Piezoelectric Transducer  

Li, Jianzhong (The Key Laboratory for Optoelectronic Technology and Systems, Ministry of Education and the College of Optoelectronic Engineering, Chongqing University)
Wen, Yumei (The Key Laboratory for Optoelectronic Technology and Systems, Ministry of Education and the College of Optoelectronic Engineering, Chongqing University)
Li, Ping (The Key Laboratory for Optoelectronic Technology and Systems, Ministry of Education and the College of Optoelectronic Engineering, Chongqing University)
Publication Information
Abstract
Traditional magnetostrictive/piezoelectric laminate composites are generally in the regular geometries such as rectangles or disks. To explore properties of the irregular geometry magnetostrictive/piezoelectric transducer in the fundamental resonant frequency, a step dumb-bell shaped Magnetoelectric (ME) transducer is presented in this study. Both analytical and experimental investigations are carried out for the dumb-bell shaped transducer in the fundamental frequency. Comparing with the traditional rectangular transducer, the theory shows the resonant frequency of dumb-bell shaped transducer is reduced 31%, and the experiment gives the result of that is 37% which is independent of dc magnetic fields. The ratio of magnetoelectric voltage coefficient (MEVC) between the dumb-bell shaped and rectangular shaped transducers in theory is 66% comparing with that of in experiment is varying from 140% to 33% when the dc field is increased from 0 Oe to 118 Oe.
Keywords
Magnetoelectric (ME) effect; magnetostrictive/piezoelectric transducer; Ferromagnetic constant-elasticity alloy (FCEA); Polyvinylidene fluoride (PVDF); Magnetoelectric voltage coefficient (MEVC); fundamental resonant frequency;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 P. Bajons and W. Kromp, Ultrasonics 16, 213 (1978).   DOI   ScienceOn
2 J. Ryu, A. V. Carazo, K. Uchino, and H. E. Kim, Jpn. J. Appl. Phys. Part 1 40, 4948 (2001).   DOI
3 C. W. Nan, M. I. Bichurin, S. X. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys. 103, 35 (2008).
4 M. I. Bichurin, D. A. Filippov, V. M. Petrov, V. M. Laletsin, N. Paddubnaya, and G. Srinivasan, Phys. Rev. B 68, 4 (2003).
5 S. X. Dong, J. R. Cheng, J. F. Li, and D. Viehland, Appl. Phys. Lett. 83, 4812 (2003).   DOI   ScienceOn
6 J. G. Wan, Z. Y. Li, Y. Wang, M. Zeng, G. H. Wang, and J. M. Liu, Appl. Phys. Lett. 86, 3 (2005).
7 J. Y. Zhai, Z. P. Xing, S. X. Dong, J. F. Li, and D. Viehland, Appl. Phys. Lett. 93, 3 (2008).
8 M. S. Guo and S. X. Dong, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 480 (2010).   DOI   ScienceOn
9 L. X. Bian, Y. M. Wen, P. Li, Q. L. Gao, Y. Zhu, and M. Yu, IEEE Sens. J. 9, 1620 (2009).   DOI   ScienceOn
10 J. Y. Zhai, S. X. Dong, Z. P. Xing, J. F. Li, and D. Viehland, Appl. Phys. Lett. 89, 3 (2006).
11 X. W. Dong, B. Wang, K. F. Wang, J. G. Wan, and J. M. Liu, Sens. Actuator A-Phys. 153, 64 (2009).   DOI   ScienceOn
12 G. Srinivasan, A. S. Tatarenko, and M. I. Bichurin, Electron. Lett. 41, 596 (2005).   DOI   ScienceOn
13 C. H. Yang, Y. M. Wen, P. Li, and L. X. Bian, Acta Phys. Sin. 57, 7292 (2008).
14 S. Dong, J. Zhai, F. Bai, J. F. Li, and D. Viehland, Appl. Phys. Lett. 87, 3 (2005).
15 R. Kellogg and A. Flatau, J. Intell. Mater. Syst. Struct. 19, 583 (2008).   DOI
16 L. X. Bian, Y. M. Wen, P. Li, Q. L. Gao, and X. X. Liu, J. Magnetics 14, 66 (2009).   DOI   ScienceOn
17 D. A. Pan, S. G. Zhang, A. A. Volinsky, and L. J. Qiao, J. Phys. D-Appl. Phys. 41, 5 (2008).