Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.11.611

Effect of Dimension Control of Piezoelectric Layer on the Performance of Magnetoelectric Laminate Composite  

Cho, Kyung-Hoon (School of Materials Science and Engineering, Kumoh National Institute of Technology)
Publication Information
Korean Journal of Materials Research / v.28, no.11, 2018 , pp. 611-614 More about this Journal
Abstract
Laminate composites composed of $0.95Pb(Zr_{0.52}Ti_{0.48})O_3-0.05Pb(Mn_{1/3}Sb_{2/3})O_3$ piezoelectric ceramic and Fe-Si-B based magnetostrictive amorphous alloy are fabricated, and the effect of control of the areal dimensions and the thickness of the piezoelectric layer on the magnetoelectric(ME) properties of the laminate composites is studied. As the aspect ratio of the piezoelectric layer and the magnetostrictive layer increases, the maximum value of the ME voltage coefficient(${\alpha}_{ME}$) increases and the intensity of the DC magnetic field at which the maximum ${\alpha}_{ME}$ value appears decreases. Moreover, as the thickness of the piezoelectric layer decreases, ${\alpha}_{ME}$ tends to increase. The ME composites exhibit ${\alpha}_{ME}$ values higher than $1Vcm^{-1}Oe^{-1}$ even at the non-resonance frequency of 1 kHz. This study shows that, apart from the inherent characteristics of the piezoelectric composition, small thicknesses and high aspect ratios of the piezoelectric layer are important dimensional determinants for achieving high ME performance of the piezoelectric-magnetostrictive laminate composite.
Keywords
magnetoelectric; piezoelectric; magnetostriction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. W. Nan, M. I. Bichurin, S. Dong, D. Viehland and G. Srinivasan, J. Appl. Phys., 103, 031101 (2008).   DOI
2 G. Srinivasan, Annu. Rev. Mater. Res., 40, 153 (2010).   DOI
3 M. Fiebig, J. Phys. D: Appl. Phys., 38, R123 (2005).   DOI
4 C. W. Nan, G. Liu, Y. Lin and H. Chen, Phys. Rev. Lett., 94, 197203 (2005).   DOI
5 V. Annapureddy, M. Kim, H. Palneedi, H.-Y. Lee, S.-Y. Choi, W.-H. Yoon, D.-S. Park, J.-J. Choi, B.-D. Hahn, C.-W. Ahn, J.-W. Kim, D.-Y. Jeong, J. Ryu, Adv. Energy Mater., 6, 1601244 (2016).   DOI
6 J. Ryu, A. V. Carazo, K. Uchino and H. E. Kim, Jpn. J. Appl. Phys., 40, 4948 (2001).   DOI
7 R. A. Islam and S. Priya, Integr. Ferroelectr., 82, 1 (2006).   DOI
8 Y. B. Kamble, S. S. Chougule and B. Chougule, J. Alloy Compd., 476, 733 (2009).   DOI
9 J. W. Nie, G. Y. Xu, Y. Yang and C. W. Cheng, Mater. Chem. Phys., 115, 400 (2009).   DOI
10 Y. J. Li, X. M. Chen, Y. Q. Lin and Y. H. Tang, J. Eur. Ceram. Soc., 26, 2839 (2006).   DOI
11 S. T. Zhang, L. Y. Ding, M. H. Lu, Z. L. Luo and Y. F. Chen, Solid State Comm., 148, 420 (2008).   DOI
12 Y. Wang, D. Gray, D. Berry, J. Gao, M. Li, J. Li and D. Viehland, Adv. Mater., 23, 4111 (2011).   DOI
13 K.-H. Cho, C.S. Park and S. Priya, Appl. Phys. Lett., 97, 182902 (2010).   DOI
14 Z. Fang, S. G. Lu, F. Li, S. Datta, Q. M. Zhang and M. El Tahchi, Appl. Phys. Lett., 95, 112903 (2009).   DOI
15 H. Palneedi, S.-M. Na, G.-T. Hwang, M. Peddigari, K. W. Shin, K. H. Kim and J. Ryu, J. Alloy Compd., 765, 764 (2018).   DOI
16 R. E. Newnham, Properties of Materials: Anisotropy, Symmetry, Structure, Oxford University Press Inc., New York (2005).
17 D. R. Patil and B. K. Chougule, J. Alloy Compd., 458, 335 (2008).   DOI