• 제목/요약/키워드: Piezoelectric Control

검색결과 670건 처리시간 0.026초

이송자벌레를 위한 압전소자의 모델링 및 운동제어: 1. PZT소자의 히스테리시스 모델링 (Modeling and Motion Control of the Piezoelectric Actuator for the Inchworm: Part 1. Hysteresis Modeling of the Piezoelectric Actuator)

  • 김인수;김기범;김영식
    • 한국소음진동공학회논문집
    • /
    • 제15권7호
    • /
    • pp.871-877
    • /
    • 2005
  • This paper proposes a new modeling scheme to describe the hysteresis between input voltage and displacement of piezoelectric actuators in the inchworm. From the experimental analysis of Piezoelectric actuator behaviors. the hysteresis characteristics including residual displacement can be modeled by second order functions of a maximum Input voltage and preload. Various experiments are performed to demonstrate the effectiveness and validation of the proposed modeling scheme.

박막과 압전 재료 결합에 관한 연구 (Study on the Bonding Process between Thin film and Piezoelectric Materials)

  • 정우석;김기범;홍철운
    • 한국전기전자재료학회논문지
    • /
    • 제18권11호
    • /
    • pp.1014-1018
    • /
    • 2005
  • The purpose of this study is to obtain strong bond strength at the interface between piezoelectric substrates and semiconductor thin films to be applied for the manufacture of high-performance acoustic wave semiconductor coupled device. For this purpose, we have compared and examined the effects of different surface treatment methods on hydrophile properties at the surface of the piezoelectric substrates. Moreover, we have observed the effect of microwave and laser on the elimination of water molecules at the interface. As for the piezoelectric substrates, dry method for surface treatment was found to be superior in the control of hydrophilicity of the surface compared to wet method. On the other hand, both microwave and laser were found to be effective in the elimination of water molecules in the interface.

Long Range and High Axial Load Capacity Nanopositioner Using Single Piezoelectric Actuator and Translating Supports

  • Juluri, Bala Krishna;Lin, Wu;Lim, Lennie E N
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권4호
    • /
    • pp.3-9
    • /
    • 2007
  • Existing long range piezoelectric motors with friction based transmission mechanisms are limited by the axial load capacity. To overcome this problem, a new linear piezoelectric motor using one piezoelectric actuator combined with a novel stepping mechanism is reported in this paper. To obtain both long range and fine accuracy, dual positioning control strategy consisting of coarse positioning and fine positioning is used. Coarse positioning is used for long travel range by accumulating motion steps obtained by piezoelectric actuator. This is followed by fine positioning where required accuracy is obtained by fine motion displacement of piezoelectric actuator. This prototype is able to provide resolution of 20 nanometers and withstand a maximum axial load of 300N. At maximum load condition, the positioner can move forward to a travel distance of 5mm at a maximum speed of 0.4 mm/sec. This design of nanopositioner can be used in applications for ultra precision positioning and grinding operations where high axial force capacity is required.

벤더형 고응답 압전밸브의 주파수 특성에 관한 연구 (A Study on Frequency Characteristics of a Bender Type High-Speed Piezoelectric Pneumatic Valve)

  • 윤소남;함영복;박중호;이성수
    • 드라이브 ㆍ 컨트롤
    • /
    • 제9권4호
    • /
    • pp.14-18
    • /
    • 2012
  • Two kinds of piezoelectric actuator are applied to the valve for controlling the direction, the flow and the pressure of the fluid. One is a stack type piezoelectric actuator which has very fast response characteristics but very tiny displacement. The other is a bender type piezoelectric actuator which has also fast response characteristics but lower than the stack type one, and has longer displacement than the stack type one. So, the bender type piezoelectric actuator has advantage to apply to the valve for controlling a large amount of flow and fast on-off operating. In this study, the bender type piezoelectric pneumatic valve for color sorter is designed and fabricated. The new type high speed piezo valve with the both side supporting mechanism for high operating frequency and high reliability is discussed for separating the foreign body from the grains. Finally, the performance characteristics of a fabricated valve are analyzed and the frequency characteristics are also discussed for substituting the conventional type solenoid actuator.

길이와 두께 비에 따른 두께 전단모드 압전소자의 공진 변위 및 압전특성 (Resonant Displacement and Piezoelectric Properties of Thickness Shear Mode Piezoelectric Devices According to Length/Thickness Ratio)

  • 박민호;류주현;홍재일;정영호
    • 한국전기전자재료학회논문지
    • /
    • 제24권6호
    • /
    • pp.463-467
    • /
    • 2011
  • In this study, thickness shear mode piezoelectric devices for AE sensor with excellent displacement and sensitivity characteristics were simulated using ATILA FEM program, and then fabricated. Displacement and electro mechanical coupling factors of the piezoelectric devices were investigated. The simulation results showed that excellent displacement and electromechanical coupling factor was obtained when the ratio of Length/Thickness was 1. The piezoelectric device of L/T= 1 exhibited the optimum values of fr= 150 kHz, displacement= $6.23{\times}10^{-8}$[m], $k_{15}$= 0.598. The results show that the thickness shear mode piezoelectric device is a promising candidate for the application of AE sensor piezoelectric device.

Force holding control of a finger using piezoelectric actuators

  • Jiang, Z.W.;Chonan, S.;Koseki, M;Chung, T.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.202-207
    • /
    • 1993
  • A theoretical and experimental study is presented for the force holding control of a miniature robotic ringer which is driven by a pair of piezoelectric unimorph cells. In the theoretical analysis, one finger is modeled as a flexible cantilever with a tactile force sensor at the tip and the mate of the finger is a solid beam supposed with sufficient stiffness. Further, the force sensor is modeled by a one-degree-of-freedom, mass-spring system and the output of sensor is then described by the sensor stiffness multiplied by the relative displacement. The problem investigated in this paper is that two typical holding tasks of the human finger are picked up and applied to the robotic finger. One is the work holding a stationary object with a prescribed, time-varying force and the other one is to keep the contacted force constant even if the object is in motion. The simple PID feedback control scheme is used to control the minute gripping force of order 0.01 Newton. It is shown both experimentally and theoretically that the artificial finger with the piezoelectric actuator works well in the minute force holding of the tiny object.

  • PDF

적층형 세라믹 엑추에이터를 이용한 MEMS용 압전밸브의 제작 및 특성 (Fabrication and Characteristics of a Piezoelectric Valve for MEMS using a Multilayer Ceramic Actuator)

  • 정귀상;김재민;윤석진
    • 한국전기전자재료학회논문지
    • /
    • 제17권5호
    • /
    • pp.515-520
    • /
    • 2004
  • We report on the development of a Piezoelectric valvc that is designed to have a high reliability for fluid control systems, such as mass flow control, transportation and chemical analysis. The valve was fabricated using a MCA(multilayer ceramic actuator), which has a low consumption power, high resolution and accurate control. The fabricated valve is composed of MCA, a valve actuator die and an seat die. The design of the actuator dic was done by FEM(finite element method) modeling, respectively. And, the valve seat die with 6 trenches was made. and the actuator die, which possible to optimize control to MCA, was fabricated. After Si-wafer direct bonding between the seat die and the actuator die, MCA was also anodic bonded to the scat/actuator die structure. PDMS(poly dimethylsiloxane) sealing pad was fabricated to minimize a leak-rate. It was also bonded to scat die and stainless steel package. The flow rate was 9.13 sccm at a supplied voltage of 100 V with a 50 % duty ratio and non-linearity was 2.24 % FS. From these results, the fabricated MCA valve is suitable for a variety of flow control equipments, a medical bio-system, semiconductor fabrication process, automobile and air transportation industry with low cost, batch recess and mass production.

능동 감쇠층을 이용한 아크형태 쉘 모델에 대한 진동특성 연구 (Vibration Control of Arc Type Shell using Active Constrained Layer Damping)

  • 고성현;박현철;박철휴;황운봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.1032-1038
    • /
    • 2002
  • The Active Constrained Layer Damping(ACLO) combines the simplicity and reliability of passive damping with the low weight and high efficiency of active control to attain high damping characteristics. The proposed ACLD treatment consists of a viscoelastic damping which is sandwiched between an active piezoelectric layer and a host structure. In this manner, the smart ACLD consists of a Passive Constrained Layer Damping(PCLD) which is augmented with an active control in response to the structural vibrations. The Arc type shell model is introduced to describe the interactions between the vibrating host structure, piezoelectric actuator and visco damping, The system is modeled by applying ARMAX model and changing a state-space form through the system identification method. An optimum control law for piezo actuator is obtain by LQR(Linear Quadratic Regulator) Method. The performance of ACLD system is determined and compared with PCLD in order to demonstrate the effectiveness of the ACLD treatment, Also, the actuation capability of a piezo actuator is examined experimentally by using various thickness of Viscoelastic Materials(VEM).

  • PDF

Electrically-induced actuation for open-loop control to cancel self-excitation vibration

  • Makihara, Kanjuro;Ecker, Horst
    • Smart Structures and Systems
    • /
    • 제9권2호
    • /
    • pp.189-206
    • /
    • 2012
  • This paper focuses on the actuation system combined with a piezoelectric transducer and an electric circuit, which leads to a new insight; the electric actuation system is equivalent to mechanical variable-stiffness actuation systems. By controlling the switch in the circuit, the electric status of the piezoelectric transducer is changed, and consequently a variable-stiffness mechanism is achieved on the electric actuator. This proposed actuator features a shift in the equilibrium point of force, while conventional electrically-induced variable-stiffness actuators feature the variation of the stiffness value. We intensively focus on the equilibrium shift in the actuation system, which has been neglected. The stiffness of the variable-stiffness actuator is periodically modulated by controlling the switch, to suppress the vibration of the system in an open-loop way. It is proved that this electric actuator is equivalent to its mechanical counterpart, and that the electrical version has some practical advantages over the mechanical one. Furthermore, another kind of electrically-induced variable-stiffness actuator, using an energy-recycling mechanism is also discussed from the viewpoint of open-loop vibration control. Extensive numerical simulations provide comprehensive assessment on both electrically-induced variable-stiffness actuators employed for open-loop vibration control.

압전 감지기/작동기를 이용한 복합재 평판의 최적 진동제어 실험 (Optimal Vibration Control Experiments of Composite Plates Using Piezoelectric Sensor/Actuator)

  • 류근호;한재흥;이인
    • 소음진동
    • /
    • 제7권1호
    • /
    • pp.161-168
    • /
    • 1997
  • The present paper describes the vibration control experiment of composite plates with bonded piezoelectric sensor and actuator. The system is modeled as two degree-of-freedom system using modal coordinates and the system parameters are obtained from vibration tests. Kalman filter is adopted for extracting modal coordinates from sensor signal, and control algorithms applied to the system are Linear Quadratic Gaussian(LQG) control, Bang-Bang Control (BBC), Negative Velocity Feedback(NVF), Proportional Derivative Control(PDC). From observation of the spillover and control perfomance, it is concluded that a higher order control algorithm such as LQG rather than BBG, NVF, PDC is suitable for efficient simultaneous control of both bending and twisting modes of composite plates.

  • PDF