• Title/Summary/Keyword: Photonic confinement

Search Result 14, Processing Time 0.022 seconds

Photonic Quasi-crystal Fiber for Orbital Angular Momentum Modes with Ultra-flat Dispersion

  • Kim, Myunghwan;Kim, Soeun
    • Current Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.298-303
    • /
    • 2019
  • We propose a photonic quasi-crystal fiber (PQF) for supporting up to 14 orbital angular momentum (OAM) modes with low and ultra-flat dispersion characteristics over the C+L bands. The designed PQF which consists of a large hollow center and quasi structural small air holes in the clad region exhibits low confinement losses and a large effective index separation (>$10^{-4}$) between the vector modes. This proposed fiber could potentially be exploited for mode division multiplexing and other OAM mode applications in fibers.

Analysis on Transition between Index- and Bandgap-guided Modes in Photonic Crystal Fiber

  • Hong, Kee Suk;Lim, Sun Do;Park, Hee Su;Kim, Seung Kwan
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.733-738
    • /
    • 2016
  • We calculate optical properties of guided modes of a hybrid-guiding photonic crystal fiber. The design and modeling of such hybrid-guiding PCF is made by replacing air holes with inserts of high refractive index material layer by layer in order. The optical properties such as mode intensity profile, mode dispersion, optical birefringence, confinement loss, and chromatic dispersion during transition of the guiding mechanism are analyzed and discussed. The guided modes in the hybrid-guiding region are also compared with those of reference index-guiding and bandgap-guiding photonic crystal fibers.

Ultrahuge Light Intensity in the Gap Region of a Bowtie Nanoantenna Coupled to a Low-mode-volume Photonic-crystal Nanocavity

  • Ebadi, Nassibeh;Yadipour, Reza;Baghban, Hamed
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.85-89
    • /
    • 2018
  • This paper presents a new, efficient hybrid photonic-plasmonic structure. The proposed structure efficiently and with very high accuracy combines the resonant mode of a low-mode-volume photonic-crystal nanocavity with a bowtie nanoantenna's plasmonic resonance. The resulting enormous enhancement of light intensity of about $1.1{\times}10^7$ in the gap region of the bowtie nanoantenna, due to the effective optical-resonance combination, is realized by subtle optimization of the nanocavity's optical characteristics. This coupled structure holds great promise for many applications relying on strong confinement and enhancement of optical field in nanoscale volumes, including antennas (communication and information), optical trapping and manipulation, sensors, data storage, nonlinear optics, and lasers.

Optical Mode Properties of the 2-D Photonic Crystal Slab (2차원 광결정 슬랩 구조에서 광모드 특성)

  • 류한열;황정기;이용희
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.260-261
    • /
    • 2000
  • 광결정(photonic crystal)은 빛의 파장 크기 정도의 격자 상수를 지닌 1차원, 2차원, 또는 3차원의 주기적인 구조이다. 광결정에는 광밴드갭(photonic bandgap)이라는 빛의 자발 방출이 억제된 진동수의 영역이 존재하는데, 이 영역을 이용하여 빛의 자발 방출을 조절하고 빛의 흐름을 제어할 수 있다. $^{[1]}$ 지난 10여년간 2차원, 3차원의 광결정 구조에 대한 연구가 많이 이루어져 왔는데, 최근에는 슬랩 도파관(slab waveguide)에 2차원 광결정을 만든 구조에 대한 연구가 활발하게 진행중이다. 이 구조는 평면 방향으로는 광밴드갭 효과로 광모드를 가둘 수 있고 수직 방향으로는 전반사를 이용하여 모드를 가둘 수 있어서 3차원적인 모드 confinement 효과를 얻을 수 있다. [그림 1]의 (a)에 air-bridge 형태의 2차원 광결정 슬랩(photonic crystal slab) 구조를 도식적으로 나타내었고, (b)에는 본 연구실에서 제작한 구조 표면의 scanning electron micrograph을 나타내었다. 현재 몇몇 연구 그룹에서 이와 같은 광결정 슬랩 구조를 이용한 반도체 레이저를 실현하는데 성공하였다.$^{[2,3]}$ (중략)

  • PDF

Midinfrared Refractive-index Sensor with High Sensitivity Based on an Optimized Photonic Crystal Coupled-cavity Waveguide

  • Han, Shengkang;Wu, Hong;Zhang, Hua;Yang, Zhihong
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.444-449
    • /
    • 2021
  • A photonic crystal coupled-cavity waveguide created on silicon-on-insulator is designed to act as a refractive-index-sensing device at midinfrared wavelengths around 4 ㎛. To realize high sensitivity, effort is made to engineer the structural parameters to obtain strong modal confinement, which can enhance the interaction between the resonance modes and the analyzed sample. By adjusting some parameters, including the shape of the cavity, the width of the coupling cavity, and the size of the surrounding dielectric columns, a high-sensitivity refractive-index sensor based on the optimized photonic crystal coupled-cavity waveguide is proposed, and a sensitivity of approximately 2620 nm/RIU obtained. When an analyte is measured in the range of 1.0-1.4, the sensor can always maintain a high sensitivity of greater than 2400 nm/RIU. This work demonstrates the viability of high-sensitivity photonic crystal waveguide devices in the midinfrared band.

Midinfrared Pulse Compression in a Dispersion-decreasing and Nonlinearity-increasing Tapered As2S3 Photonic Crystal Fiber

  • Shen, Jianping;Zhang, Siwei;Wang, Wei;Li, Shuguang;Zhang, Song;Wang, Yujun
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.250-260
    • /
    • 2021
  • A tapered As2S3 photonic crystal fiber (PCF) with four layers of air holes in a hexagonal array around the core is designed in this paper. Numerical simulation shows that the dispersion D decreases and the nonlinearity coefficient γ increases from the thick to the thin end along the tapered PCF. We simulate the midinfrared pulse compression in the tapered As2S3 PCF using the adaptive split-step Fourier method. Initial Gaussian pulses of 4.4 ps and a central wavelength of 2.5 ㎛ propagating in the tapered PCF are located in the anomalous dispersion region. With an average power of assumed input pulses at 3 mW and a repetition frequency of 81.0 MHz, we theoretically obtain a pulse duration of 56 fs and a compression factor of 78 when the pulse propagates from the thick end to the thin end of the tapered PCF. When confinement loss in the tapered PCF is included in the simulation, the minimum pulse duration reaches 72 fs; correspondingly, the maximum compression factor reaches 61. The results show that in the anomalous-dispersion region, midinfrared pulses can be efficiently compressed in a dispersion-decreasing and nonlinearity-increasing tapered As2S3 PCF. Due to confinement loss in the tapered fiber, the efficiency of pulse compression is suppressed.

Nanoplasmonics: Enabling Platform for Integrated Photonics and Sensing

  • Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.75-75
    • /
    • 2015
  • Strong interactions between electromagnetic radiation and electrons at metallic interfaces or in metallic nanostructures lead to resonant oscillations called surface plasmon resonance with fascinating properties: light confinement in subwavelength dimensions and enhancement of optical near fields, just to name a few [1,2]. By utilizing the properties enabled by geometry dependent localization of surface plasmons, metal photonics or plasmonics offers a promise of enabling novel photonic components and systems for integrated photonics or sensing applications [3-5]. The versatility of the nanoplasmonic platform is described in this talk on three folds: our findings on an enhanced ultracompact photodetector based on nanoridge plasmonics for photonic integrated circuit applications [3], a colorimetric sensing of miRNA based on a nanoplasmonic core-satellite assembly for label-free and on-chip sensing applications [4], and a controlled fabrication of plasmonic nanostructures on a flexible substrate based on a transfer printing process for ultra-sensitive and noise free flexible bio-sensing applications [5]. For integrated photonics, nanoplasmonics offers interesting opportunities providing the material and dimensional compatibility with ultra-small silicon electronics and the integrative functionality using hybrid photonic and electronic nanostructures. For sensing applications, remarkable changes in scattering colors stemming from a plasmonic coupling effect of gold nanoplasmonic particles have been utilized to demonstrate a detection of microRNAs at the femtomolar level with selectivity. As top-down or bottom-up fabrication of such nanoscale structures is limited to more conventional substrates, we have approached the controlled fabrication of highly ordered nanostructures using a transfer printing of pre-functionalized nanodisks on flexible substrates for more enabling applications of nanoplasmonics.

  • PDF

Design of nonlinear photonic crystal fibers with ultra-flattened zero dispersion for supercontinuum generation

  • Kumar, Pranaw;Fiaboe, Kokou Firmin;Roy, Jibendu Sekhar
    • ETRI Journal
    • /
    • v.42 no.2
    • /
    • pp.282-291
    • /
    • 2020
  • The study reports on the design and performance of two air-filled and two partial ethanol-filled photonic crystal fiber (PCF) structures with a tetra core for supercontinuum generation. The PCFs are nonlinear with ultra-flattened zero dispersion. Holes with smaller areas are used to create a tetra-core PCF structure. Ethanol is filled in the holes of smaller area while the larger holes of cladding region are airfilled. Optical properties including dispersion, effective mode area, confinement loss, normalized frequency, and nonlinear coefficient of the designed PCF structures are investigated via full vector finite difference time domain (FDTD) method. A PCF structure with lead silicate as wafer exhibits significantly better results than a PCF structure with silica as wafer. However, both structures report dispersion at a telecommunication wavelength corresponding to 1.55 ㎛. Furthermore, the PCF structure with lead silicate as wafer exhibits a very high nonlinear coefficient corresponding to 1375 W-1 km-1 at the same wavelength. This scheme can be used for optical communication systems and in optical devices by exploiting the principle of nonlinearity.

Highly Birefringent and Dispersion Compensating Photonic Crystal Fiber Based on Double Line Defect Core

  • Lee, Yong Soo;Lee, Chung Ghiu;Jung, Yongmin;Oh, Myoung-kyu;Kim, Soeun
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.567-574
    • /
    • 2016
  • We propose a highly birefringent and dispersion compensating photonic crystal fiber based on a double line defect core. Using a finite element method (FEM) with a perfectly matched layer (PML), it is demonstrated that it is possible to obtain broadband large negative dispersion of about -400 to -427 ps/(nm.km) covering all optical communication bands (from O to U band) and to achieve the dispersion coefficient of -425 ps/(nm.km) at 1.55μm. In addition, the highest birefringence of the proposed PCF at 1.55 μm is 1.92 × 10-2 and the value of birefringence from the wavelength of 1.26 to 1.8 μm (covering O to U bands) is about 1.8 × 10-2 to 1.92 × 10-2. It is confirmed that from the simulation results, the confinement loss of the proposed PCF is always less than 10-3 dB/km at 1.55 μm with seven fiber rings of air holes in the cladding.

Design of Novel Hybrid Optical Modulator Incorporating Electro-Optic Polymer Waveguide into Silicon Photonic Crystal (실리콘/폴리머 물질 기반의 하이브리드 광 결정 광변조기 설계)

  • Sung, Jun-Ho;Lee, Min-Woo;Choi, Chul-Hyun;Lee, Seung-Gol;Park, Se-Guen;Lee, El-Hang;O, Beom-Hoan
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.3
    • /
    • pp.187-192
    • /
    • 2008
  • The design and analysis of a novel photonic crystal electro-optic modulator are presented in this paper. The device incorporates an electro-optic (EO) polymer slot waveguide into the center of a silicon photonic crystal waveguide. In this device, strong optical confinement in the EO polymer core and small group velocity from the photonic crystal structure provide a surprise enhancement of the EO effect.