DOI QR코드

DOI QR Code

Photonic Quasi-crystal Fiber for Orbital Angular Momentum Modes with Ultra-flat Dispersion

  • Kim, Myunghwan (Integrated Optics Laboratory, Advanced Photonics Research Institute, GIST) ;
  • Kim, Soeun (Integrated Optics Laboratory, Advanced Photonics Research Institute, GIST)
  • Received : 2019.04.30
  • Accepted : 2019.06.08
  • Published : 2019.08.25

Abstract

We propose a photonic quasi-crystal fiber (PQF) for supporting up to 14 orbital angular momentum (OAM) modes with low and ultra-flat dispersion characteristics over the C+L bands. The designed PQF which consists of a large hollow center and quasi structural small air holes in the clad region exhibits low confinement losses and a large effective index separation (>$10^{-4}$) between the vector modes. This proposed fiber could potentially be exploited for mode division multiplexing and other OAM mode applications in fibers.

Keywords

KGHHD@_2019_v3n4_298_f0001.png 이미지

FIG. 2. (a) Effective indices of the eigenmodes and (b) the effective index difference between the same OAM mode orders as a function of wavelength.

KGHHD@_2019_v3n4_298_f0002.png 이미지

FIG. 1. Schematic of the proposed quasi-crystal fiber. The gray circles represent air holes. a is the distance between neighboring air holes and r0 to r6 are the radii of the air holes in the cladding region.

KGHHD@_2019_v3n4_298_f0003.png 이미지

FIG. 3. (a) Electric field intensity and (b) phase distribution of the HE3,1 (OAM2,1) mode.

KGHHD@_2019_v3n4_298_f0004.png 이미지

FIG. 4. (a) Dispersion of the eigenmodes as a function of wavelength, and enlarged dispersion of (b) HE2,1, (c) HE3,1, and EH1,1 modes. (d) The differential value of dispersion as a function of wavelength.

KGHHD@_2019_v3n4_298_f0005.png 이미지

FIG. 5. Confinement loss of the eigenmodes as a function of wavelength.

TABLE 1. Summary of the eigenmodes performances at 1.55 μm

KGHHD@_2019_v3n4_298_t0001.png 이미지

TABLE 2. Comparison of OAM mode performances

KGHHD@_2019_v3n4_298_t0002.png 이미지

References

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Optical angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185 (1992). https://doi.org/10.1103/PhysRevA.45.8185
  2. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristenesen, H. Huang, A. E. Willner, and S. Ramachandran, "Terabit-scale orbital angular momentum mode division multiplexing in fibers," Science 340, 1545-1548 (2013). https://doi.org/10.1126/science.1237861
  3. J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, "Terabit free-space data transmission employing orbital angular momentum multiplexing," Nat. Photonics 6, 488-496 (2012). https://doi.org/10.1038/nphoton.2012.138
  4. Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. molisch, M. Tur, M. J. Padgett, and A. E. Willner, "High-capacity millimeter-wave communications with orbital angular momentum multiplexing," Nat. Commun. 5, 4876 (2014). https://doi.org/10.1038/ncomms5876
  5. Z. Wang, N. Zhang, and X. C. Yuan, "High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication," Opt. Express 19, 482-492 (2011). https://doi.org/10.1364/OE.19.000482
  6. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, "Entanglement of the orbital angular momentum states of photons," Nature 412, 313-316 (2001). https://doi.org/10.1038/35085529
  7. Y. Ming, J. Tang, Z. Zhen, F. Xu, L. Zhang, and Y. Lu, "Generation of N00N state with orbital angular momentum in a twisted nonlinear photonic crystal," IEEE J. Sel. Topics Quantum Electron. 21, 225-230 (2015). https://doi.org/10.1109/JSTQE.2014.2382977
  8. S. Furhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, "Spiral phase contrast imaging in microscopy," Opt. Express 13, 689-694 (2005). https://doi.org/10.1364/OPEX.13.000689
  9. J. Arlt, K. Dholakia, L. Allen, and M. Padgett, "The production of multiringed Laguerre-Gaussian modes by computer-generated holograms," J. Mod. Opt. 45, 1231-1237 (1998). https://doi.org/10.1080/09500349808230913
  10. K. Sueda, G. Miyaji, N. Miyanaga, and M. Nakatsuka, "Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses," Opt. Express 12, 3548-3553 (2004). https://doi.org/10.1364/OPEX.12.003548
  11. Z. Zhao, J. Wang, S. Li, and A. E. Willner, "Metamaterials-based broadband generation of orbital angular momentum carrying vector beams," Opt. Lett. 38, 932-934 (2013). https://doi.org/10.1364/OL.38.000932
  12. E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, "Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface," Light: Sci. Appl. 3, e167 (2014). https://doi.org/10.1038/lsa.2014.48
  13. G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, "Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber," Science 337, 446-449 (2012). https://doi.org/10.1126/science.1223824
  14. Y. Yue, L. Zhang, Y. Yan, N. Ahmed, J. Yang, H. Huang, Y. Ren, S. Dolinar, M. Tur, and A. E. Willner, "Octave-spanning supercontinuum generation of vortices in an $As_2S_3$ ring photonic crystal fiber," Opt. Lett. 37, 1889-1891 (2012). https://doi.org/10.1364/OL.37.001889
  15. H. Li, G. Ren, B. Zhu, Y. Gao, B. Yin, J. Wang, and S. Jian, "Guiding terahertz orbital angular momentum beams in multimode Kagome hollow-core fibers," Opt. Lett. 42, 179-182 (2017). https://doi.org/10.1364/OL.42.000179
  16. H. Zhang, X. Zhang, H. Li, Y. Deng, X. Zhang, L. Xi, X. Tang, and W. Zhang, "A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission," Opt. Commun. 397, 59-66 (2017). https://doi.org/10.1016/j.optcom.2017.03.075
  17. Z. Hu, Y. Huang, A. Luo, H. Cui, Z. Luo, and W. Xu, "Photonic crystal fiber for supporting 26 orbital angular momentum modes," Opt. Express 24, 17285-17291 (2016). https://doi.org/10.1364/OE.24.017285
  18. G. Zhou, G. Zhou, C. Chen, M. Xu, C. Xia, and Z. Hou, "Design and analysis of a microstructure ring fiber for orbital angular momentum transmission," IEEE Photon. J. 8, 1-12 (2016).
  19. H. Zhang, W. Zhang, L. Xi, X. Tang, X. Zhang, and X. Zhang, "A new type circular photonic crystal fiber for orbital angular momentum mode transmission," IEEE Photon. Technol. Lett. 28, 1426-1429 (2016). https://doi.org/10.1109/LPT.2016.2551325
  20. C. Fu, S. Liu, Y. Wang, Z. Bai, J. He, C. Liao, Y. Zhang, F. Zhang, B. Yu, S. Gao, Z. Li, and Y. Wang, "High-order orbital angular momentum mode generator based on twisted photonic crystal fiber," Opt. Lett. 43, 1786-1789 (2018). https://doi.org/10.1364/OL.43.001786
  21. Z. Hui, Y. Zhang, and A. Soliman, "Mid-infrared dual-rhombic air hole $GE_{20}Sb_{15}Se_{65}$ chalcogenide photonic crystal fiber with high birefringence and high nonlinearity," Ceram. Int. 44, 10383-10392 (2018). https://doi.org/10.1016/j.ceramint.2018.03.052
  22. Z. Hui and J. Zhang, "Demonstration of 100 Gbit/s optical time-division demultiplexing with 1-to-4 wavelength multicasting using the cascaded four-wave mixing in photonic crystal fiber with a single control light source," Microw. Opt. Technol. Lett. 56, 2330-2335 (2014). https://doi.org/10.1002/mop.28585
  23. H. Zhang, X. Zhang, H. Li, Y. Deng, L. Xi, X. Tang, and W. Zhang, "The orbital angular momentum modes supporting fibers based on the photonic crystal fiber structure," Crystals 7, 286 (2017). https://doi.org/10.3390/cryst7100286
  24. X. Zhao, G. Zhou, S. Li, Z. Liu, D. Wei, Z. Hou, and L. Hou, "Photonic crystal fiber for dispersion compensation," Appl. Opt. 47, 5190-5196 (2008). https://doi.org/10.1364/AO.47.005190
  25. M. E. Zoorob, M. D. B. Chariton, G. J. Parker, J. J. Baumberg, and M. C. Netti, "Complete photonic bandgaps in 12-fold symmetric quasicrystals," Nature 404, 740-743 (2000). https://doi.org/10.1038/35008023
  26. B. Freedman, G. Bartal, M. Segev, R. Lifshitz, and D. N. Christoet, "Wave and defect dynamics in nonlinear photonic quasicrystals," Nature 440, 1166-1169 (2006). https://doi.org/10.1038/nature04722
  27. S. Kim, C. Kee, and J. Lee, "Novel optical properties of six-fold symmetric photonic quasicrystal fibers," Opt. Express 15, 13221-13226 (2007). https://doi.org/10.1364/OE.15.013221
  28. C. Brunet, P. Vaity, Y. Messaddeq, S. Larochelle, and L. A. Rusch, "Design, fabrication and validation of an OAM fiber supporting 36 states," Opt. Express 22, 26117-26127 (2014). https://doi.org/10.1364/OE.22.026117
  29. R. T. Bise and D. J. Trevor, "Sol-gel derived microstructured fiber: fabrication and characterization," in Proc. OFC/NFOEC Technical Digest. Optical Fiber Communication Conference (USA, Mar. 2005), Paper OWL6.