Browse > Article
http://dx.doi.org/10.3807/JOSK.2016.20.6.733

Analysis on Transition between Index- and Bandgap-guided Modes in Photonic Crystal Fiber  

Hong, Kee Suk (Division of Physical Metrology, Korea Research Institute of Standards and Science)
Lim, Sun Do (Division of Physical Metrology, Korea Research Institute of Standards and Science)
Park, Hee Su (Division of Convergence Technology, Korea Research Institute of Standards and Science)
Kim, Seung Kwan (Division of Physical Metrology, Korea Research Institute of Standards and Science)
Publication Information
Journal of the Optical Society of Korea / v.20, no.6, 2016 , pp. 733-738 More about this Journal
Abstract
We calculate optical properties of guided modes of a hybrid-guiding photonic crystal fiber. The design and modeling of such hybrid-guiding PCF is made by replacing air holes with inserts of high refractive index material layer by layer in order. The optical properties such as mode intensity profile, mode dispersion, optical birefringence, confinement loss, and chromatic dispersion during transition of the guiding mechanism are analyzed and discussed. The guided modes in the hybrid-guiding region are also compared with those of reference index-guiding and bandgap-guiding photonic crystal fibers.
Keywords
Photonic crystal fibers; Photonic bandgap fibers; Numerical modeling; Fiber properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Russell, "Photonic Crystal Fibers," Science 299, 358-462 (2003).   DOI
2 T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).   DOI
3 N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, A. Petersson, and H. R. Simonsen, "Improved large-mode-area endlessly single-mode photonic crystal fibers," Opt. Lett. 28, 393-395 (2003).   DOI
4 T. A. Birks, D. Mogilevstev, J. C. Knight, and P. St. J. Russell, "Dispersion compensation using single-material fibers," IEEE Photon. Technol. Lett. 11, 674-676 (1999).   DOI
5 A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, "Highly birefringent photonic crystal fibers," Opt. Lett. 25, 1325-1327 (2000).   DOI
6 H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, "Bismuth glass holey fibers with high nonlinearity," Opt. Express 12, 5082-5087 (2004).   DOI
7 A. Ferrando, E. Silverstre, J. J. Miret, and P. Andres, "Nearly zero ultraflattened dispersion in photonic crystal fibers," Opt. Lett. 25, 790-792 (2000).   DOI
8 N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, "Application of an ARROW model for designing tunable photonic devices," Opt. Express 12, 1540-1550 (2004).   DOI
9 C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, "Highly tunable birefringent microstructured optical fiber," Opt. Lett. 27, 842-844 (2002).   DOI
10 L. Scolari, T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, Anawati, M. Nielsen, and P. Bassi, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Express 13, 7483-7496 (2005).   DOI
11 D. Yeom, P. Steinvurzel, B. J. Eggleton, S. D. Lim, and B. Y. Kim, "Tunable acoustic gratings in solid-core photonic bandgap fiber," Opt. Express 15, 3513-3518 (2007).   DOI
12 S. A. Cerqueira, F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, "Hybrid photonic crystal fiber," Opt. Express 14, 926-931 (2006).   DOI
13 T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003).   DOI
14 B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, "Fluid-Filled Solid-Core Photonic Bandgap Fibers," J. Lightwave Technol. 27, 1617-1630 (2009).   DOI
15 S. G. Johnson and J. D. Joannopoulos, "The MIT photonic-bands(MPB) package," http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands.
16 A. Isomaki and O. G. Okhotnikov, "Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber," Opt. Express 14, 9238-9243 (2006).   DOI
17 A. Wang, A. K. George, and J. C. Knight, "Three-level neodymium fiber laser incorporating photonic bandgap fiber," Opt. Lett. 31, 1388-1390 (2006).   DOI
18 V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, "Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm," Appl. Phys. Lett. 92, 061113 (2008).   DOI
19 J. Sun and C. C. Chan, "Hybrid guiding in liquid-crystal photonic crystal fibers," J. Opt. Soc. Am. B 24, 2640-2646 (2007).   DOI
20 M. Perrin, Y. Quiquempois, G. Bouwmans, and M. Douay, "Coexistence of total internal reflexion and bandgap modes in solid core photonic bandgap fibre with intersticial air holes," Opt. Express 15, 13783-13795 (2007).   DOI
21 S. G. Johnson and J. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001).   DOI
22 K. Saitoh and M. Koshiba, "Numerical Modeling of Photonic Crystal Fibers," J. Lightwave Technol. 23, 3580-3590 (2005).   DOI
23 K. Saitoh and M. Koshiba, "Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides," J. Lightwave Technol. 19, 405-413 (2001).   DOI
24 K. Saitoh and M. Koshiba, "Leakage loss and group velocity dispersion in air-core photonic bandgap fibers," Opt. Express 11, 3100-3109 (2003).   DOI
25 T. Ritari, H. Ludvigsen, M. Wegmuller, M. Legre, N. Gisin, J. R. Folkenberg, and M. D. Nielsen, "Experimental study of polarization properties of highly birefringent photonic crystal fibers," Opt. Express 12, 5931-5939 (2004).   DOI
26 M. Koshiba and K. Saitoh, "Structural dependence of effective area and mode field diameter for holey fibers," Opt. Express 11, 1746-1756 (2003).   DOI