Browse > Article
http://dx.doi.org/10.3807/JOSK.2016.20.5.567

Highly Birefringent and Dispersion Compensating Photonic Crystal Fiber Based on Double Line Defect Core  

Lee, Yong Soo (Integrated Optics Laboratory, Advanced Photonics Research Institute, Gwangju Institute of Science and Technology)
Lee, Chung Ghiu (Department of Electronic Engineering, Chosun University)
Jung, Yongmin (Optoelectronics Research Centre, University of Southampton)
Oh, Myoung-kyu (Integrated Optics Laboratory, Advanced Photonics Research Institute, Gwangju Institute of Science and Technology)
Kim, Soeun (Integrated Optics Laboratory, Advanced Photonics Research Institute, Gwangju Institute of Science and Technology)
Publication Information
Journal of the Optical Society of Korea / v.20, no.5, 2016 , pp. 567-574 More about this Journal
Abstract
We propose a highly birefringent and dispersion compensating photonic crystal fiber based on a double line defect core. Using a finite element method (FEM) with a perfectly matched layer (PML), it is demonstrated that it is possible to obtain broadband large negative dispersion of about -400 to -427 ps/(nm.km) covering all optical communication bands (from O to U band) and to achieve the dispersion coefficient of -425 ps/(nm.km) at 1.55μm. In addition, the highest birefringence of the proposed PCF at 1.55 μm is 1.92 × 10-2 and the value of birefringence from the wavelength of 1.26 to 1.8 μm (covering O to U bands) is about 1.8 × 10-2 to 1.92 × 10-2. It is confirmed that from the simulation results, the confinement loss of the proposed PCF is always less than 10-3 dB/km at 1.55 μm with seven fiber rings of air holes in the cladding.
Keywords
Photonic crystal fibers; Dispersion compensating fiber; Polarization maintaining fiber;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded single mode non-silica glass holey optical fibres,” Electron. Lett. 38, 546-547 (2002).   DOI
2 J. Canning, E. Buckley, K. Lyttikainen, and T. Ryan, “Wavelength dependent leakage in a Fresnel-based air silica structured optical fibre,” Opt. Commun. 205, 95-99 (2002).   DOI
3 R. Buczynski, “Photonic crystal fibers,” Acta physica Polonica: A 106, 141-167 (2004).   DOI
4 R. Buczynksi, P. Szamiak, D. Pysz, I. Kujawa, R. Stepien, and T. Szoplik, “Double-core photonic crystal fiber with square lattice,” Proc. SPIE 5450, 223-230 (2004).   DOI
5 F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large pitch hollow-core photonic crystal fiber,” Opt. Express 16, 20626-20636 (2008).   DOI
6 P. Falkenstein, C. D. Merritt, and B. L. Justus, “Fused preforms for the fabrication of photonic crystal fibers,” Opt. Lett. 29, 1858-1860 (2004).   DOI
7 Y. D. Hazan, J. B. MacChesney, T. E. Stockert, D. J. Trevor, and R. S. Windeler, “Sol-gel method of making an optical fiber with multiple apertures,” US Patent 6467312 B1 (2000).
8 R. T. Bise and D. J. Trever, “Sol-gel derived microstructured fiber: fabrication and characterization,” in Proc. Optical Fiber Communication Conf. 2005 (Anaheim, California United States, March 2005), CD, paper OWL6.
9 F. Orlando, M. T. Baptista, and L. Santos, “Recent Advances in High-Birefringence Fiber Loop Mirror Sensors,” Sensors 7, 2970-2983 (2007).   DOI
10 M. Karimi, T. Sun, and K. T. V. Grattan, “Design evaluation of a high birefringence single mode optical fiber-based sensor for lateral pressure monitoring applications,” IEEE Sensors J. 13, 4459-4464 (2013).   DOI
11 A. M. Vengsarkar and W. A. Reed, “Dispersion-compensating single-mode fibers: efficient designs for first- and second-order compensation,” Opt. Lett. 18, 924-926 (1993).   DOI
12 J. C. Knight and P. St. J. Russell, “Photonic crystal fibers: New way to guide light,” Science 296, 276-277 (2002)   DOI
13 R. H. Stolen, “Polarization effects in fiber Raman and Brillouin lasers,” IEEE J. Quantum Electron. 15, 1157-1160 (1979).   DOI
14 J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547-1549 (1996).   DOI
15 J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476-1478 (1998).   DOI
16 J. C. Knight, “Photonic crystal fibres,” Nature 424, 847-851 (2003).   DOI
17 K. Saitoh and K. Masanori, “Single-polarization single-mode photonic crystal fibers,” IEEE Photonics Technol. Lett. 15, 1384-1386 (2003).   DOI
18 A. Ferrando, E. Silvestre, J. J. Miret, and P.Andrés, “Nearly zero ultraflattened dispersion in photonic crystal fibers,” Opt. Lett. 25, 790-792 (2000).   DOI
19 T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997).   DOI
20 F. Poletti, V. Finazzi, T. M. Monro, N. G. Broderick, V. Tse, and D. J. Richardson, “Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers,” Opt. Express 13, 3728-3736 (2005).   DOI
21 H. Ademgil and S. Haxha, “Highly birefringent photonic crystal fibers with ultralow chromatic dispersion and low confinement losses,” J. Lightwave Technol. 26, 441-448 (2008).   DOI
22 K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11, 843-852 (2003).   DOI
23 J. C. Knight and D. V. Skryabin, “Nonlinear waveguide optics and photonic crystal fibers,” Opt. Express 15, 15365-15376 (2007).   DOI
24 A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325-1327 (2000).   DOI
25 D. Chen and S. Linfang, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19, 185-187 (2007).
26 T. Matsui, K. Nakajima, and I. Sankawa, “Dispersion compensation over all the telecommunication bands with double-cladding photonic crystal fiber,” J. Lightwave Technol. 25, 757-762 (2007).   DOI
27 M. J. Steel and R. M. Osgood, “Elliptical-hole photonic crystal fibers,” Opt. Lett. 26, 229-231 (2001).   DOI
28 T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knuders, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).   DOI
29 J. Ju, W. Jin, and M. S. Demokan, “Properties of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 15, 1375-1377 (2003).   DOI
30 Soan Kim, Chul-Sik Kee, Jongmin Lee, Yongmin Jung, Hyoung-Gyu Choi, Kyunghwan Oh, “Ultrahigh birefringence of elliptic core fiber with irregular air holes,” J. Appl. Phys. 101, 016101 (2007).   DOI
31 L. Zhang and C. Yang, “Photonic crystal fibers with squeezed hexagonal lattice,” Opt. Express 12, 2371-2376 (2004).   DOI
32 P. Song, L. Zhang, Z. Wang, Q. Hu, S. Zhao, S. Jiang, and S. Liu, “Birefringence characteristics of squeezed lattice photonic crystal fiber,” J. Lightwave Technol. 25, 1771-1776 (2007).   DOI
33 J. Noda, K. Okamoto, and Y. Sasaki, “Polarization maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071-1089 (1986).   DOI
34 Md. S. Habib, Md. S. Habib, S.M. A. Razzak, Md. A. Hossain, “Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber,” Opt. Fiber Technol. 19, 461-467 (2013).   DOI
35 Kubota, S. Kawanishi, S. Koyanagi, M. Tanaka, and S. Yamaguchi, “Absolutely single polarization photonic crystal fiber,” IEEE Photon. Technol. Lett. 16, 182-184 (2004).   DOI
36 M. A. Islam and M. S. Alam, “Design optimization of equiangular spiral photonic crystal fiber for large negative flat dispersion and high birefringence,” J. Lightwave Technol. 30, 3545-3551 (2012).   DOI
37 W. Wang, B. Yang, H. Song, and Y. Fan, “Investigation of high birefringence and negative dispersion photonic crystal fiber with hybrid crystal lattice,” Optik 124, 2901-2903 (2013).   DOI
38 S. Kim, Y. S. Lee, C. G. Lee, Y. Jung, and K. Oh, “Hybrid Square-Lattice Photonic Crystal Fiber with Broadband Single-Mode Operation, High Birefringence, and Normal Dispersion,” J. Opt. Soc. Korea 19, 449-455 (2015).   DOI
39 F. Poli, M. Foroni, M. Bottacini, M. Fuochi, N. Burani, L. Rosa, A. Cucinotta, and S. Selleri, “Single-mode regime of square-lattice photonic crystal fibers,” J. Opt. Soc. Am. A 22, 1655-1661 (2005).   DOI
40 A. H. Bouk, A. Cucinotta, F. Poli, and S. Selleri, “Dispersion properties of square-lattice photonic crystal fibers,” Opt. Express 12, 941-946 (2004).   DOI
41 P. Klocek, Handbook of infrared Optical Materials (Marcel Dekker, New York, NY, 1991).
42 F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett. 16, 1065-1067 (2004).   DOI
43 W. H. Reeves, J. C. Knight, and P. S. J. Russell, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express 10, 609-613 (2002).   DOI