Browse > Article
http://dx.doi.org/10.3807/COPP.2019.3.4.298

Photonic Quasi-crystal Fiber for Orbital Angular Momentum Modes with Ultra-flat Dispersion  

Kim, Myunghwan (Integrated Optics Laboratory, Advanced Photonics Research Institute, GIST)
Kim, Soeun (Integrated Optics Laboratory, Advanced Photonics Research Institute, GIST)
Publication Information
Current Optics and Photonics / v.3, no.4, 2019 , pp. 298-303 More about this Journal
Abstract
We propose a photonic quasi-crystal fiber (PQF) for supporting up to 14 orbital angular momentum (OAM) modes with low and ultra-flat dispersion characteristics over the C+L bands. The designed PQF which consists of a large hollow center and quasi structural small air holes in the clad region exhibits low confinement losses and a large effective index separation (>$10^{-4}$) between the vector modes. This proposed fiber could potentially be exploited for mode division multiplexing and other OAM mode applications in fibers.
Keywords
Optical orbital angular momentum; Photonic quasi-crystal fiber; Near zero flattened dispersion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. Wang, N. Zhang, and X. C. Yuan, "High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication," Opt. Express 19, 482-492 (2011).   DOI
2 A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, "Entanglement of the orbital angular momentum states of photons," Nature 412, 313-316 (2001).   DOI
3 Y. Ming, J. Tang, Z. Zhen, F. Xu, L. Zhang, and Y. Lu, "Generation of N00N state with orbital angular momentum in a twisted nonlinear photonic crystal," IEEE J. Sel. Topics Quantum Electron. 21, 225-230 (2015).   DOI
4 S. Furhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, "Spiral phase contrast imaging in microscopy," Opt. Express 13, 689-694 (2005).   DOI
5 J. Arlt, K. Dholakia, L. Allen, and M. Padgett, "The production of multiringed Laguerre-Gaussian modes by computer-generated holograms," J. Mod. Opt. 45, 1231-1237 (1998).   DOI
6 K. Sueda, G. Miyaji, N. Miyanaga, and M. Nakatsuka, "Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses," Opt. Express 12, 3548-3553 (2004).   DOI
7 Z. Zhao, J. Wang, S. Li, and A. E. Willner, "Metamaterials-based broadband generation of orbital angular momentum carrying vector beams," Opt. Lett. 38, 932-934 (2013).   DOI
8 E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, "Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface," Light: Sci. Appl. 3, e167 (2014).   DOI
9 G. K. L. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. St. J. Russell, "Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber," Science 337, 446-449 (2012).   DOI
10 Y. Yue, L. Zhang, Y. Yan, N. Ahmed, J. Yang, H. Huang, Y. Ren, S. Dolinar, M. Tur, and A. E. Willner, "Octave-spanning supercontinuum generation of vortices in an $As_2S_3$ ring photonic crystal fiber," Opt. Lett. 37, 1889-1891 (2012).   DOI
11 H. Li, G. Ren, B. Zhu, Y. Gao, B. Yin, J. Wang, and S. Jian, "Guiding terahertz orbital angular momentum beams in multimode Kagome hollow-core fibers," Opt. Lett. 42, 179-182 (2017).   DOI
12 H. Zhang, X. Zhang, H. Li, Y. Deng, X. Zhang, L. Xi, X. Tang, and W. Zhang, "A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission," Opt. Commun. 397, 59-66 (2017).   DOI
13 M. E. Zoorob, M. D. B. Chariton, G. J. Parker, J. J. Baumberg, and M. C. Netti, "Complete photonic bandgaps in 12-fold symmetric quasicrystals," Nature 404, 740-743 (2000).   DOI
14 Z. Hui and J. Zhang, "Demonstration of 100 Gbit/s optical time-division demultiplexing with 1-to-4 wavelength multicasting using the cascaded four-wave mixing in photonic crystal fiber with a single control light source," Microw. Opt. Technol. Lett. 56, 2330-2335 (2014).   DOI
15 H. Zhang, X. Zhang, H. Li, Y. Deng, L. Xi, X. Tang, and W. Zhang, "The orbital angular momentum modes supporting fibers based on the photonic crystal fiber structure," Crystals 7, 286 (2017).   DOI
16 X. Zhao, G. Zhou, S. Li, Z. Liu, D. Wei, Z. Hou, and L. Hou, "Photonic crystal fiber for dispersion compensation," Appl. Opt. 47, 5190-5196 (2008).   DOI
17 B. Freedman, G. Bartal, M. Segev, R. Lifshitz, and D. N. Christoet, "Wave and defect dynamics in nonlinear photonic quasicrystals," Nature 440, 1166-1169 (2006).   DOI
18 S. Kim, C. Kee, and J. Lee, "Novel optical properties of six-fold symmetric photonic quasicrystal fibers," Opt. Express 15, 13221-13226 (2007).   DOI
19 C. Brunet, P. Vaity, Y. Messaddeq, S. Larochelle, and L. A. Rusch, "Design, fabrication and validation of an OAM fiber supporting 36 states," Opt. Express 22, 26117-26127 (2014).   DOI
20 R. T. Bise and D. J. Trevor, "Sol-gel derived microstructured fiber: fabrication and characterization," in Proc. OFC/NFOEC Technical Digest. Optical Fiber Communication Conference (USA, Mar. 2005), Paper OWL6.
21 C. Fu, S. Liu, Y. Wang, Z. Bai, J. He, C. Liao, Y. Zhang, F. Zhang, B. Yu, S. Gao, Z. Li, and Y. Wang, "High-order orbital angular momentum mode generator based on twisted photonic crystal fiber," Opt. Lett. 43, 1786-1789 (2018).   DOI
22 Z. Hu, Y. Huang, A. Luo, H. Cui, Z. Luo, and W. Xu, "Photonic crystal fiber for supporting 26 orbital angular momentum modes," Opt. Express 24, 17285-17291 (2016).   DOI
23 G. Zhou, G. Zhou, C. Chen, M. Xu, C. Xia, and Z. Hou, "Design and analysis of a microstructure ring fiber for orbital angular momentum transmission," IEEE Photon. J. 8, 1-12 (2016).
24 H. Zhang, W. Zhang, L. Xi, X. Tang, X. Zhang, and X. Zhang, "A new type circular photonic crystal fiber for orbital angular momentum mode transmission," IEEE Photon. Technol. Lett. 28, 1426-1429 (2016).   DOI
25 Z. Hui, Y. Zhang, and A. Soliman, "Mid-infrared dual-rhombic air hole $GE_{20}Sb_{15}Se_{65}$ chalcogenide photonic crystal fiber with high birefringence and high nonlinearity," Ceram. Int. 44, 10383-10392 (2018).   DOI
26 Y. Yan, G. Xie, M. P. J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A. F. molisch, M. Tur, M. J. Padgett, and A. E. Willner, "High-capacity millimeter-wave communications with orbital angular momentum multiplexing," Nat. Commun. 5, 4876 (2014).   DOI
27 L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Optical angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185 (1992).   DOI
28 N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristenesen, H. Huang, A. E. Willner, and S. Ramachandran, "Terabit-scale orbital angular momentum mode division multiplexing in fibers," Science 340, 1545-1548 (2013).   DOI
29 J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, "Terabit free-space data transmission employing orbital angular momentum multiplexing," Nat. Photonics 6, 488-496 (2012).   DOI