• Title/Summary/Keyword: Photon cross-section

Search Result 29, Processing Time 0.033 seconds

Evaluation of photon radiation attenuation and buildup factors for energy absorption and exposure in some soils using EPICS2017 library

  • Hila, F.C.;Javier-Hila, A.M.V.;Sayyed, M.I.;Asuncion-Astronomo, A.;Dicen, G.P.;Jecong, J.F.M.;Guillermo, N.R.D.;Amorsolo, A.V. Jr.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3808-3815
    • /
    • 2021
  • In this paper, the EPICS2017 photoatomic database was used to evaluate the photon mass attenuation coefficients and buildup factors of soils collected at different depths in the Philippine islands. The extraction and interpolation of the library was accomplished at the recommended linear-linear scales to obtain the incoherent and total cross section and mass attenuation coefficient. The buildup factors were evaluated using the G-P fitting method in ANSI/ANS-6.4.3. An agreement was achieved between XCOM, MCNP5, and EPICS2017 for the calculated mass attenuation coefficient values. The buildup factors were reported at several penetration depths within the standard energy grid. The highest values of both buildup factor classifications were found in the energy range between 100 and 400 keV where incoherent scattering interaction probabilities are predominant, and least at the region of predominant photoionization events. The buildup factors were examined as a function of different soil silica contents. The soil samples with larger silica concentrations were found to have higher buildup factor values and hence lower shielding characteristics, while conversely, those with the least silica contents have increased shielding characteristics brought by the increased proportions of the abundant heavier oxides.

Investigation of photon, neutron and proton shielding features of H3BO3-ZnO-Na2O-BaO glass system

  • Mhareb, M.H.A.;Alajerami, Y.S.M.;Dwaikat, Nidal;Al-Buriahi, M.S.;Alqahtani, Muna;Alshahri, Fatimh;Saleh, Noha;Alonizan, N.;Saleh, M.A.;Sayyed, M.I.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.949-959
    • /
    • 2021
  • The current study aims to explore the shielding properties of multi-component borate-based glass series. Seven glass-samples with composition of (80-y)H3BO3-10ZnO-10Na2O-yBaO where (y = 0, 5, 10, 15, 20, 25 and 30 mol.%) were synthesized by melt-quench method. Various shielding features for photons, neutrons, and protons were determined for all prepared samples. XCOM, Phy-X program, and SRIM code were performed to determine and explain several shielding properties such as equivalent atomic number, exposure build-up factor, specific gamma-ray constants, effective removal cross-section (ΣR), neutron scattering and absorption, Mass Stopping Power (MSP) and projected range. The energy ranges for photons and protons were 0.015-15 MeV and 0.01-10 MeV, respectively. The mass attenuation coefficient (μ/ρ) was also determined experimentally by utilizing two radioactive sources (166Ho and 137Cs). Consistent results were obtained between experimental and XCOM values in determining μ/ρ of the new glasses. The addition of BaO to the glass matrix led to enhance the μ/ρ and specific gamma-ray constants of glasses. Whereas the remarkable reductions in ΣR, MSP, and projected range values were reported with increasing BaO concentrations. The acquired results nominate the use of these glasses in different radiation shielding purposes.

The influence of MgO on the radiation protection and mechanical properties of tellurite glasses

  • Hanfi, M.Y.;Sayyed, M.I.;Lacomme, E.;Akkurt, I.;Mahmoud, K.A.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.2000-2010
    • /
    • 2021
  • Mechanical moduli, such as Young's modulus (E), Bulks modulus (B), Shear modulus (S), longitudinal modulus (L), Poisson's ratio (σ) and micro Hardness (H) were theoretically calculated for (100-x)TeO2+x MgO glasses, where x = 10, 20, 30, 40 and 45 mol%, based on the Makishima-Mackenzie model. The estimated results showed that the mechanical moduli and the microhardness of the glasses were improved with the increase of the MgO contents in the TM glasses, while Poisson's ratio decreased with the increase in MgO content. Moreover, the radiation shielding capacity was evaluated for the studied TM glasses. Thus, the linear attenuation coefficient (LAC), mass attenuation coefficient (MAC), transmission factor (TF) and half-value thickness (𝚫0.5) were simulated for gamma photon energies between 0.344 and 1.406 MeV. The simulated results showed that glass TM10 with 10 mol % MgO possess the highest LAC and varied in the range between 0.259 and 0.711 cm-1, while TM45 glass with 45 mol % MgO possess the lowest LAC and vary in the range between 0.223 and 0.587 cm-1 at gamma photon energies between 0.344 and 1.406 MeV. Furthermore, the BXCOM program was applied to calculate the effective atomic number (Zeff), equivalent atomic number (Zeq) and buildup factors (EBF and EABF) of the glasses. The effective removal cross-section for the fast neutrons (ERCSFN, ∑R) was also calculated theoretically. The received data depicts that the lowest ∑R was achieved for TM10 glasses, where ∑R = 0.0193 cm2 g-1, while TM45 possesses the highest ERCSFN where ∑R = 0.0215 cm2 g-1.

Evaluation of gamma-ray and neutron attenuation properties of some polymers

  • Kacal, M.R.;Akman, F.;Sayyed, M.I.;Akman, F.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.818-824
    • /
    • 2019
  • In the present work, we determined the gamma-ray attenuation characteristics of eight different polymers(Polyamide (Nylon 6) (PA-6), polyacrylonitrile (PAN), polyvinylidenechloride (PVDC), polyaniline (PANI), polyethyleneterephthalate (PET), polyphenylenesulfide (PPS), polypyrrole (PPy) and polytetrafluoroethylene (PTFE)) using transmission geometry utilizing the high resolution HPGe detector and different radioactive sources in the energy range 81-1333 keV. The experimental linear attenuation coefficient values are compared with theoretical data (WinXCOM data). The linear attenuation coefficient of all polymers reduced quickly with the increase in energy, at the beginning, while decrease more slowly in the region from 267 keV to 835 keV. The effective atomic number of PVDC and PTFE are comparatively higher than the $Z_{eff}$ of the remaining polymers, while PA-6 possesses the lowest effective atomic number. The half value layer results showed that PTFE ($C_2F_4$, highest density) is more effective to attenuate the gamma photons. Also, the theoretical results of macroscopic effective removal cross section for fast neutrons ($\sum_{R}$) were computed to investigate the neutron attenuation characteristics. It is found that the $\sum_{R}$ values of the eight investigated polymers are close and ranged from $0.07058cm^{-1}$ for PVDC to $0.11510cm^{-1}$ for PA-6.

Photochemical Response Analysis on Different Seeding Date and Nitrogen (N) level for Maize (Zea mays L.) (옥수수의 파종시기 및 질소수준별 광화학적 반응 해석)

  • Park, So-Hyun;Yoo, Sung-Yung;Lee, Min-Ju;Park, Jong-Yong;Song, Ki-Tae;Kim, Tae Wan;Lee, Byung-Moo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • The photochemical characteristics were analyzed in the context of sowing time and different levels of fertilized nitrogen during the maize (Zea mays L.) growth. When maize was early sawn, the fluorescence parameters related with electron-transport, in photosystem II (PSII) and PSI, were effectively enhanced with the higher level of fertilized nitrogen. Highest values were observed in maize leaves grown in double N-fertilized plot. The photochemical parameters were declined in the progress of growth stage. In early growth stage, the fluorescence parameters were highest, and then reduced to about half of the parameters related with electron transport on PSII and PSI at middle and late growth stages. In 1/2 N plot, the photochemical energy dissipation was measured to 13% in term of active reaction center per absorbed photon resulting in decrease in performance index and driving force of electron. This decrease induced to lower the photochemical effectiveness. In 2 N plots, the electron transport flux from $Q_A$ to $Q_B$ per cross section and the number of active PSII RCs per cross section were considerably enhanced. It was clearly indicated that the connectivity between photosynthetic PSII and PSI, i.e. electron transport, was far effective.

High-k ZrO2 Enhanced Localized Surface Plasmon Resonance for Application to Thin Film Silicon Solar Cells

  • Li, Hua-Min;Zang, Gang;Yang, Cheng;Lim, Yeong-Dae;Shen, Tian-Zi;Yoo, Won-Jong;Park, Young-Jun;Lim, Jong-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.276-276
    • /
    • 2010
  • Localized surface plasmon resonance (LSPR) has been explored recently as a promising approach to increase energy conversion efficiency in photovoltaic devices, particularly for thin film hydrogenated amorphous silicon (a-Si:H) solar cells. The LSPR is frequently excited via an electromagnetic (EM) radiation in proximate metallic nanostructures and its primary con sequences are selective photon extinction and local EM enhancement which gives rise to improved photogeneration of electron-hole (e-h) pairs, and consequently increases photocurrent. In this work, high-dielectric-constant (k) $ZrO_2$ (refractive index n=2.22, dielectric constant $\varepsilon=4.93$ at the wavelength of 550 nm) is proposed as spacing layer to enhance the LSPR for application to the thin film silicon solar cells. Compared to excitation of the LSPR using $SiO_2$ (n=1.46, $\varepsilon=2.13$ at the wavelength of 546.1 nm) spacing layer with Au nanoparticles of the radius of 45nm, that using $ZrO_2$ dielectric shows the advantages of(i) ~2.5 times greater polarizability, (ii) ~3.5 times larger scattering cross-section and ~1.5 times larger absorption cross-section, (iii) 4.5% higher transmission coefficient of the same thickness and (iv) 7.8% greater transmitted electric filed intensity at the same depth. All those results are calculated by Mie theory and Fresnel equations, and simulated by finite-difference time-domain (FDTD) calculations with proper boundary conditions. Red-shifting of the LSPR wavelength using high-k $ZrO_2$ dielectric is also observed according to location of the peak and this is consistent with the other's report. Finally, our experimental results show that variation of short-circuit current density ($J_{sc}$) of the LSPR enhanced a-Si:H solar cell by using the $ZrO_2$ spacing layer is 45.4% higher than that using the $SiO_2$ spacing layer, supporting our calculation and theory.

  • PDF

Optically Controlled Silicon MESFET Modeling Considering Diffusion Process

  • Chattopadhyay, S.N.;Motoyama, N.;Rudra, A.;Sharma, A.;Sriram, S.;Overton, C.B.;Pandey, P.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.196-208
    • /
    • 2007
  • An analytical model is proposed for an optically controlled Metal Semiconductor Field Effect Transistor (MESFET), known as Optical Field Effect Transistor (OPFET) considering the diffusion fabrication process. The electrical parameters such as threshold voltage, drain-source current, gate capacitances and switching response have been determined for the dark and various illuminated conditions. The Photovoltaic effect due to photogenerated carriers under illumination is shown to modulate the channel cross-section, which in turn significantly changes the threshold voltage, drainsource current, the gate capacitances and the device switching speed. The threshold voltage $V_T$ is reduced under optical illumination condition, which leads the device to change the device property from enhancement mode to depletion mode depending on photon impurity flux density. The resulting I-V characteristics show that the drain-source current IDS for different gate-source voltage $V_{gs}$ is significantly increased with optical illumination for photon flux densities of ${\Phi}=10^{15}\;and\;10^{17}/cm^2s$ compared to the dark condition. Further more, the drain-source current as a function of drain-source voltage $V_{DS}$ is evaluated to find the I-V characteristics for various pinch-off voltages $V_P$ for optimization of impurity flux density $Q_{Diff}$ by diffusion process. The resulting I-V characteristics also show that the diffusion process introduces less process-induced damage compared to ion implantation, which suffers from current reduction due to a large number of defects introduced by the ion implantation process. Further the results show significant increase in gate-source capacitance $C_{gs}$ and gate-drain capacitance $C_{gd}$ for optical illuminations, where the photo-induced voltage has a significant role on gate capacitances. The switching time ${\tau}$ of the OPFET device is computed for dark and illumination conditions. The switching time ${\tau}$ is greatly reduced by optical illumination and is also a function of device active layer thickness and corresponding impurity flux density $Q_{Diff}$. Thus it is shown that the diffusion process shows great potential for improvement of optoelectronic devices in quantum efficiency and other performance areas.

Calculation of Dose Conversion Coefficients in the Anthropomorphic MIRD Phantom in Broad Unidirectional Beams of Monoenergetic Photons (MIRD 인형팬텀의 넓고 평행한 감마선빔에 대한 선량 환산계수 계산)

  • Chang, Jai-Kwon;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.1
    • /
    • pp.47-58
    • /
    • 1997
  • The conversion coefficients of effective dose per unit air kerma and equivalent dose per unit fluence were calculated by MCNP4A code for antero-posterior(AP) and postero- anterior(PA) incidence of broad, unidirectional beams of photons into anthropomorphic MIRD phantom. Calculations have been performed for 20 monoenergetic photons of energy ranging from 0.03 to 10 MeV. The conversion coefficients showed a good agreement with the corresponding values given in the draft publication of joint task group of ICRP and ICRU within 10%. The deviations may arise from the differences of geometry in the MIRD phantom and the ADAM/EVE phantoms, and the differences in the codes and cross-section data used. Inclusion of a specific oesophagus model results in effective dose slightly different(5% at most) from the effective doses obtained by adopting the equivalent doses for the thymus or pancreas. Deletion of the ULI from the remainder organ appeared not to be significant for the cases of photon dosimetry covered in this study.

  • PDF

Photochemical Response Analysis on Drought Stress for Red Pepper (Capsiumannuum L.)

  • Yoo, Sung-Yung;Lee, Yong-Ho;Park, So-Hyun;Choi, Kyong-Mi;Park, June-Young;Kim, A-Ram;Hwang, Su-Min;Lee, Min-Ju;Ko, Tae-Seok;Kim, Tae-Wan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.659-664
    • /
    • 2013
  • The aim of this study is to determine the drought stress index through photochemical analysis in red pepper (Capsiumannuum L.). The photochemical interpretation was performed in the basis of the relation between Kautsky effect and Photosystem II (PSII) following the measurement of chlorophyll, pheophytin contents, and $CO_2$ assimilation in drought stressed 5-week-old red pepper plants. The $CO_2$ assimilation rate was severely lowered with almost 77% reduction of chlorophyll and pheophytin contents at four days after non-irrigation. It was clearly observed that the chlorophyll fluorescence intensity rose from a minimum level (the O level), in less than one second, to a maximum level (the P-level) via two intermediate steps labeled J and I (OJIP process). Drought factor index (DFI) was also calculated using measured OJIP parameters. The DFI was -0.22, meaning not only the initial inhibition of PSII but also sequential inhibition of PSI. In real, most of all photochemical parameters such as quantum yield of the electron transport flux from Quinone A ($Q_A$) to Quinone B ($Q_B$), quantum yield of the electron transport flux until the PSI electron acceptors, quantum yield of the electron transport flux until the PSI electron acceptors, average absorbed photon flux per PSII reaction center, and electron transport flux until PSI acceptors per cross section were profoundly reduced except number of QA reducing reaction centers (RCs) per PSII antenna chlorophyll (RC/ABS). It was illuminated that at least 6 parameters related with quantum yield/efficiency and specific energy fluxes (per active PSII RC) could be applied to be used as the drought stress index. Furthermore, in the combination of parameters, driving forces (DF) for photochemical activity could be deduced from the performance index (PI) for energy conservation from photons absorbed by PSII antenna until the reduction of PSI acceptors. In conclusion, photochemical responses and their related parameters can be used as physiological DFI.