Browse > Article
http://dx.doi.org/10.1016/j.net.2018.11.011

Evaluation of gamma-ray and neutron attenuation properties of some polymers  

Kacal, M.R. (Giresun University, Arts and Sciences Faculty, Department of Physics)
Akman, F. (Bingol University, Vocational School of Technical Sciences, Department of Electronic Communication Technology)
Sayyed, M.I. (University of Tabuk, Faculty of Science, Department of Physics)
Akman, F. (Bingol University, Vocational School of Technical Sciences)
Publication Information
Nuclear Engineering and Technology / v.51, no.3, 2019 , pp. 818-824 More about this Journal
Abstract
In the present work, we determined the gamma-ray attenuation characteristics of eight different polymers(Polyamide (Nylon 6) (PA-6), polyacrylonitrile (PAN), polyvinylidenechloride (PVDC), polyaniline (PANI), polyethyleneterephthalate (PET), polyphenylenesulfide (PPS), polypyrrole (PPy) and polytetrafluoroethylene (PTFE)) using transmission geometry utilizing the high resolution HPGe detector and different radioactive sources in the energy range 81-1333 keV. The experimental linear attenuation coefficient values are compared with theoretical data (WinXCOM data). The linear attenuation coefficient of all polymers reduced quickly with the increase in energy, at the beginning, while decrease more slowly in the region from 267 keV to 835 keV. The effective atomic number of PVDC and PTFE are comparatively higher than the $Z_{eff}$ of the remaining polymers, while PA-6 possesses the lowest effective atomic number. The half value layer results showed that PTFE ($C_2F_4$, highest density) is more effective to attenuate the gamma photons. Also, the theoretical results of macroscopic effective removal cross section for fast neutrons ($\sum_{R}$) were computed to investigate the neutron attenuation characteristics. It is found that the $\sum_{R}$ values of the eight investigated polymers are close and ranged from $0.07058cm^{-1}$ for PVDC to $0.11510cm^{-1}$ for PA-6.
Keywords
Polymer; Neutron; Gamma photon; Attenuation; Shielding;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H.O. Tekin, T. Manici, Simulations of mass attenuation coefficients for shielding materials using the MCNP-X code, Nucl. Sci. Tech. 28 (2017) 95.   DOI
2 G. Lakshminarayana, S.O. Baki, K.M. Kaky, M.I. Sayyed, H.O. Tekin, A. Lira, I.V. Kityk, M.A. Mahdi, Investigation of structural, thermal properties and shielding parameters for multicomponent borate glasses for gamma and neutron radiation shielding applications, J. Non-Cryst. Solids 471 (2017) 222-237.   DOI
3 S.A.M. Issa, M.I. Sayyed, M.H.M. Zaid, K.A. Matari, Photon parameters for gamma-rays sensing properties of some oxide of lanthanides, Results in Physics 9 (2018) 206-210.   DOI
4 C.V. More, R.R. Bhosale, P.P. Pawar, Detection of new polymer materials as gamma-ray-shielding materials, Radiat. Eff. Defect Solid 175 (5-6) (2017) 469-484.
5 M. Buyukyildiz, M.A. Tasdelen, Y. Karabul, M. Caglar, O. Icelli, E. Boydas, Measurement of photon interaction parameters of high-performance polymers and their composites, Radiat. Eff. Defect Solid 173 (5-6) (2018) 474-488.   DOI
6 N. Kucuk, M. Cakir, N.A. Isitman, Mass attenuation coefficients, effective atomic numbers and effective electron densities for some polymers, Radiat. Protect. Dosim. 153 (1) (2013) 127-134.   DOI
7 Y. Elmahroug, B. Tellili, C. Souga, Determination of shielding parameters for different types of resins, Ann. Nucl. Energy 63 (2014) 619-623.   DOI
8 R.R. Bhosale, C.V. More, D.K. Gaikwad, P.P. Pawar, M.N. Rode, Radiation shielding and gamma ray attenuation properties of some polymers, Nucl. Technol. Radiat. Protect. 32 (3) (2017) 288-293.   DOI
9 V.P. Singh, N.M. Badiger, N. Kucuk, Assessment of methods for estimation of effective atomic numbers of common human organ and tissue substitutes: waxes, plastics and polymers, Radioprotection 49 (2) (2014) 115-121.   DOI
10 O. Gurler, U.A. Tarim, Determination of radiation shielding properties of some polymer and plastic materials against gamma-rays, ActaPhysicaPolonica A 130 (2016) 236-238.
11 M.I. Sayyed, Investigation of shielding parameters for smart polymers, Chin. J. Phys. 54 (2016) 408-415.   DOI
12 R. Mirji, B. Lobo, Computation of the mass attenuation coefficient of polymeric materials at specific gamma photon energies, Radiaiton Physics and Chemistry 135 (2017) 32-44.   DOI
13 H.C. Manjunatha, A study of gamma attenuation parameters in poly methyl methacrylate and Kapton, Radiat. Phys. Chem. 137 (2017) 254-259.   DOI
14 K.S. Mann, A. Rani, M.S. Heer, Shielding behaviors of some polymer and plastic materials for gamma-rays, Radiat. Phys. Chem. 106 (2015) 247-254.   DOI
15 S.M. Vahabi, M. Bahreinipour, M.S. Zafarghandi, Determining the mass attenuation coefficients for some polymers using MCNP code: a comparison study, Vacuum 136 (2017) 73-76.   DOI
16 V.P. Singh, S.P. Shirmardi, M.E. Medhat, N.M. Badiger, Determination of mass attenuation coefficient for some polymers using Monte Carlo simulation, Vacuum 119 (2015) 284-288.   DOI
17 A. Eftekhari, L. Li, Y. Yang, Polyanilinesupercapasitors. Journal of Power Sources 347 (2017) 86-107.   DOI
18 T. Vedamurthy, M. Murugesan, Synthesis, characterization, and evaluation of the hydrophobic, dielectric properties of phenols functionalized nylon 6 polymers by zinc acetate catalyst using Mannich reaction, Mater. Chem. Phys. 216 (2018) 517-525.   DOI
19 C. He, J. Liu, J. Li, F. Zhu, H. Zhao, Blending based polyacrynitrile/poly(vinyl alcohol) membrane for rechargeable lithium ion batteries, J. Membr. Sci. 560 (2018) 30-37.   DOI
20 K.S. Samra, S. Thakur, L. Singh, Photoluminescent and thermal behavior of 120 MeV silicon and 84 MeV oxygen ion irradiated PVDC, J. Lumin. 131 (2011) 686-694.   DOI
21 Y. Meng, L. Zhang, R. Xing, H. Huang, Y. Qu, T. Jiao, J. Zhou, Q. Peng, Facile preportion and electrochemical characterization of self-assembled core-shell diamond-polypyrrolenanocomposites, Colloids Surf., A 55 (2018) 787-794.
22 A. Reznickova, Z. Kolska, K. Zaruba, V. Svorcik, Grafting of gold nanoparticles on polyethylenetere phthalate using dithiol interlayer, Mater. Chem. Phys. 145 (2014) 484-490.   DOI
23 T. Hisamatsu, S. Nakano, T. Adachi, M. Ishikawa, K. Iwakura, The effect of compatibility on toughness of PPS/SEBS polymer alloy, Polymer 41 (2000) 4803-4809.   DOI
24 M.R. Kacal, F. Akman, M.I. Sayyed. Investigation of radiation shielding properties for some ceramics. Radiochim. Acta, https://doi.org/10.1515/ract-2018-3030.
25 Y. Wu, C. Sun, Y. Wu, Y. Xing, J. Xiao, B. Guo, Y. Wang, Y. Sui, The degradation behavior and mechanism of polytetrafluoroethylene under low energy proton irradiation, Nucl. Instrum. Methods Phys. Res. B 430 (2018) 47-53.   DOI
26 M.I. Sayyed, F. Akman, V. Turan, A. Araz. Evaluation of radiation absorption capacity of some soil samples. Radiochim. Acta, https://doi.org/10.1515/ract-2018-2996.
27 X. Shi, J. Jiang. Anionic polymerization initiated by lithium amides for preparing high molecular weight polyacrynitrile. Chin. Chem. Lett., https://doi.org/10.1016/j.celet.2018.01.040.
28 B.O. Elbashir, M.G. Dong, M.I. Sayyed, S.A.M. Issa, K.A. Matori, M.H.M. Zaid, Comparison of Monte Carlo simulation of gamma ray attenuation coefficients of amino acids with XCOM program and experimental data, Results in Physics 9 (2018) 6-11.   DOI
29 F. Akman, M.I. Sayyed, M.R. Kaçal, H.O. Tekin, Investigation of photon shielding performances of some selected alloys by experimental data, theoretical and MCNPX code in the energy range of 81 keV-1333 keV, J. Alloy. Comp. 772 (2019) 516-524.   DOI
30 M.I. Sayyed, F. Akman, I.H. Gecibesler, H.O. Tekin, Measurement of mass attenuation coefficients, effective atomic numbers, and electron densities for different parts of medicinal aromatic plants in low-energy region, Nucl. Sci. Tech. 29 (2018) 144.   DOI
31 F. Akman, R. Durak, M.R. Kacal, F. Bezgin, Study of absorption parameters around the K edge for selected compounds of Gd, X Ray Spectrom. 45 (2016) 103-110.   DOI
32 L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, WinXCOM- a program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem. 71 (2004) 653-654.   DOI
33 M.I. Sayyed, G. Lakshminarayana, I.V. Kityk, M.A. Mahdi, Evaluation of shielding parameters for heavy metal fluoride based tellurite-rich glasses for gamma ray shielding applications, Radiat. Phys. Chem. 139 (2017) 33-39.   DOI
34 A.H. El-Kateb, R.A.M. Rizk, A.M. Abdul-Kader, Determination of atomic crosssections and effective atomic numbers for some alloys, Ann. Nucl. Energy 27 (2000) 1333-1343.   DOI
35 T. Singh, N. Kumar, P.S. Singh, Chemical composition dependence of exposure buildup factors for some polymers, Ann. Nucl. Energy 36 (2009) 114-120.   DOI
36 P.S. Singh, T. Singh, P. Kaur, Variation of energy absorption buildup factors with incident photon energy and penetration depth for some commonly used solvents, Ann. Nucl. Energy 35 (2008) 1093-1097.   DOI
37 M.I. Sayyed, M.Y. AlZaatreh, K.A. Matori, H.A.A. Sidek, M.H.M. Zaid, Comprehensive study on estimation of gamma-ray exposure buildup factors for smart polymers as a potent application in nuclear industries, Results in Physics 9 (2018) 585-592.   DOI
38 I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes, Ann. Nucl. Energy 24 (1997) 1389-1401.   DOI
39 M.I. Sayyed, Bismuth modified shielding properties of zinc boro-tellurite glasses, J. Alloy. Comp. 688 (2016) 111-117.   DOI
40 F. Akman, I.H. Gecibesler, M.I. Sayyed, S.A. Tijani, A.R. Tufekci, I. Demirtas, Determination of some useful radiation interaction parameters for waste foods, Nuclear Engineering and Technology 50 (6) (2018) 944-949.   DOI
41 R. El-Mallawany, M.I. Sayyed, M.G. Dong, Comparative shielding properties of some tellurite glasses: Part 2, J. Non-Cryst. Solids 474 (2017) 16-23.   DOI