Browse > Article
http://dx.doi.org/10.1016/j.net.2020.07.035

Investigation of photon, neutron and proton shielding features of H3BO3-ZnO-Na2O-BaO glass system  

Mhareb, M.H.A. (Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University)
Alajerami, Y.S.M. (Medical Imaging Department, Applied Medical Sciences Faculty, Al Azhar University-Gaza)
Dwaikat, Nidal (Department of Physics, College of Sciences, King Fahd University of Petroleum & Minerals)
Al-Buriahi, M.S. (Department of Physics, Sakarya University)
Alqahtani, Muna (Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University)
Alshahri, Fatimh (Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University)
Saleh, Noha (Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University)
Alonizan, N. (Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University)
Saleh, M.A. (Nuclear Engineering Programme, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia)
Sayyed, M.I. (Department of Physics, Faculty of Science, Isra University)
Publication Information
Nuclear Engineering and Technology / v.53, no.3, 2021 , pp. 949-959 More about this Journal
Abstract
The current study aims to explore the shielding properties of multi-component borate-based glass series. Seven glass-samples with composition of (80-y)H3BO3-10ZnO-10Na2O-yBaO where (y = 0, 5, 10, 15, 20, 25 and 30 mol.%) were synthesized by melt-quench method. Various shielding features for photons, neutrons, and protons were determined for all prepared samples. XCOM, Phy-X program, and SRIM code were performed to determine and explain several shielding properties such as equivalent atomic number, exposure build-up factor, specific gamma-ray constants, effective removal cross-section (ΣR), neutron scattering and absorption, Mass Stopping Power (MSP) and projected range. The energy ranges for photons and protons were 0.015-15 MeV and 0.01-10 MeV, respectively. The mass attenuation coefficient (μ/ρ) was also determined experimentally by utilizing two radioactive sources (166Ho and 137Cs). Consistent results were obtained between experimental and XCOM values in determining μ/ρ of the new glasses. The addition of BaO to the glass matrix led to enhance the μ/ρ and specific gamma-ray constants of glasses. Whereas the remarkable reductions in ΣR, MSP, and projected range values were reported with increasing BaO concentrations. The acquired results nominate the use of these glasses in different radiation shielding purposes.
Keywords
Borate glass; Mass stopping power; Radiation shielding; Photon; Proton; Neutron;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J.K. Shultis, R.E. Faw, Radiation shielding technology, Health Phys. 88 (2005) 587-612.   DOI
2 M. Mariyappan K. Marimuthu, M.I. Sayyed, M.G. Dong, U. Kara, Effect Bi2O3 on the physical, structural and radiation shielding properties of Er3+ ions doped bismuth sodium fluoroborate glasses, J. Non-Cryst. Solids 499 (2018) 75-85.   DOI
3 S. Sukhpal, A. Kumar, D. Singh, K.S. Thind, G.S. Mudahar, Bariumeborateeflyash glasses: as radiation shielding materials, Nucl. Instrum. Methods B 266 (2008) 140-146.   DOI
4 M.I. Sayyed, A. Hakan, M.S. Al-Buriahi, L. Eloic, A. Rachid, B. Giovanni, Oxyfluoro-tellurite-zinc glasses and the nuclear-shielding ability under the substitution of AlF3 by ZnO, Appl Phys-A Mater. 126 (2) (2020) 1-12.   DOI
5 American National Standard, Gamma-Ray Attenuation Coefficients and Buildup Factors for Engineering Materials, 1991. ANSI/ANS-6.4.3.
6 J. Lukovic, B. Babic, D. Bucevac, M. Prekajski, J. Pantic, Z. Bascarevic, B. Matovic, Synthesis and characterization of tungsten carbide fine powders, Ceram. Int. 41 (2015) 1271-1277, https://doi.org/10.1016/j.ceramint.2014.09.057.   DOI
7 I.O. Olarinoye, R.I. Odiaga, S. Paul, EXABCal: a program for calculating photon exposure and energy absorption buildup factors, Heliyon 5 (2019), e02017.   DOI
8 Volodymyr Mosorov, The Lambert-Beer law in time domain form and its application, Appl. Radiat. Isot. 128 (2017) 1-5, https://doi.org/10.1016/j.apradiso.2017.06.039.   DOI
9 Y. Al-Hadeethi, M.I. Sayyed, Hiba Mohammed, Lia Rimondin, X-ray photons attenuation characteristics for two tellurite based glass systems at dental diagnostic energies, Ceram. Int. 46 (2020) 251-257.   DOI
10 Kawa M. Kaky, M.I. Sayyed, M.H.A. Mhareb, Alyaa H. Abdalsalam, K.A. Mahmoud, S.O. Baki, M.A. Mahdi, Physical, structural, optical and gamma radiation attenuation properties of germanate-tellurite glasses for shielding applications, J. Non-Cryst. Solids 545 (2020) 120250.   DOI
11 V.P. Singh, N.M. Badiger, N. Chanthima, J. Kaewkhao, Evaluation of gamma-ray exposure buildup factors and neutron shielding for bismuth borosilicate glasses, Radiat. Phys. Chem. 98 (2014) 14-21, https://doi.org/10.1016/j.radphyschem.2013.12.029. Elsevier.   DOI
12 L. William Oberkampf, Matthew F. Barone, Measures of agreement between computation and experiment: validation metrics, J. Comput. Phys. 217 (1) (2006) 5-36.   DOI
13 P. Kaur, D. Singh, T. Singh, Heavy metal oxide glasses as gamma rays shielding material, Nucl. Eng. Des. 307 (2016) 364-376.   DOI
14 M.H.A. Mhareb, Physical, optical and shielding features of Li2O-B2O3-MgOEr2O3 glasses co-doped of Sm2O3, Appl Phys-A Mater. 126 (2020) 71.   DOI
15 El-Mallawany, M.I. Sayyed, Comparative shielding properties of some tellurite glasses: part 1, Phys. B Condens. Matter 539 (2018) 133-140.   DOI
16 Y.S. Alajerami, D. Drabold, M.H.A. Mhareb, K.L.A. Cimatu, G. Chen, M. Kurudirek, Radiation shielding properties of bismuth borate glasses doped with different concentrations of cadmium oxides, Ceram. Int. 46 (2020) 12718-12726.   DOI
17 K.M. Kaky, M.I. Sayyed, Abbas Khammas, Ashok Kumar, Erdem S, akar, Alyaa H. Abdalsalam, Betul Cevi_z S, akar, Bunyamin Alim, M.H.A. Mhareb, Theoretical and experimental validation gamma shielding properties of B2O3-ZnOeMgOeBi2O3 glass system, Mater. Chem. Phys. 242 (2020) 122504.   DOI
18 C.K. Mahapatra, S.V. Barai, Hybrid fiber reinforced self compacting concrete with fly ash and colloidal nano silica : a systematic study, Construct. Build. Mater. 160 (2018) 828-838, https://doi.org/10.1016/j.conbuildmat.2017.11.131. Elsevier Ltd.   DOI
19 K. Kirdsiri, J. Kaewkhao, A. Pokaipisit, W. Chewpraditkul, P. Limsuwan, Gamma-rays shielding properties of xPbO:(100x) B2O3 glasses system at 662 keV, Ann. Nucl. Energy 36 (9) (2009) 1360-1365.   DOI
20 E.R. Shaaban, M. Shapaan, Y.B. Saddeek, Structural and thermal stability criteria of Bi2O3-B2O3 glasses, J. Phys. Condens. Matter 20 (15) (2008) 155108.   DOI
21 Tayfun Bel, Cuneyt Arslan, Nilgun Baydogan, Radiation shielding properties of poly (methyl methacrylate)/colemanite composite for the use in mixed irradiation fields of neutrons and gamma rays, Mater. Chem. Phys. 221 (2019) 58-67.   DOI
22 Mohd Zaid, Mohd Hafiz, et al., Effect of ZnO on the physical properties and optical band gap of soda lime silicate glass, Int. J. Mol. Sci. 13 (2012) 7550-7558.   DOI
23 M.J. Berger, J.H. Hubbell, XCOM: Photon Cross Sections on a Personal Computer. No. NBSIR-87-3597, National Bureau of Standards, Washington, DC (USA), 1987. Center for Radiation Research.
24 R. Bagheri, A.K. Moghaddam, H. Yousefnia, Gamma ray shielding study of bariume-bismuthe-borosilicate glasses as transparent shielding materials using MCNP-4C code, XCOM program, and available experimental data, Nucl. Eng. Technol. 49 (2017) 216-223.   DOI
25 M.F. Kaplan, Concrete Radiation Shielding, John Wiley and Sons., New York, USA, 1989.
26 M.S. Al-Buriahi, C. Sriwunkum, A. Halil, T.T. Baris, A.B. Mohamed, Investigation of barium borate glasses for radiation shielding applications, Appl Phys-A Mater. 126 (1) (2020) 1-9.   DOI
27 M. Kh Hamad, M.H.A. Mhareb, Y.S. Alajerami, M.I. Sayyed, Gameel Saleh, Y. Maswadeh, KhA Ziq, Radiation shielding properties of Nd0.6Sr0.4Mn1-yNiyO3 substitute with different concentrations of nickle, Radiat. Phys. Chem. 174 (2020) 108920.   DOI
28 M.I. Sayyed, Alyaa H. Abdalsalam, Malaa M. Taki, M.H.A. Mhareb, Bunyamin Alim, Baltakesmez Ali, Erdem Sakar, MoO3 reinforced Ultra high molecular weight PE for neutrons shielding applications, Radiat. Phys. Chem. 172 (2020) 108852.   DOI
29 O. Agar, M.I. Sayyed, F. Akman, H.O. Tekin, M.R. Kacal, An extensive investigation on gamma ray shielding features of Pd/Ag-based alloys, Nucl. Eng. Technol. 51 (2019) 853-859.   DOI
30 V.P. Singh, N.M. Badiger, J. Kaewkhao, Radiation shielding competence of silicate and borate heavy metal oxide glasses: comparative study, J. Non-Cryst. Solids 404 (2014) 167-173, https://doi.org/10.1016/j.jnoncrysol.2014.08.003. Elsevier B.V.   DOI
31 El-Mallawany, M.I. Sayyed, Comparative shielding properties of some tellurite glasses: part 1, Phys. B Condens. Matter 539 (2018) 133-140.   DOI
32 F. Gaber, M. El-Sarraf, W. Kansouh, Utilization of boron oxide glass and epoxy/ ilmenite assembly as two layer shield, Ann. Nucl. Energy 57 (2013) 106-110.   DOI
33 Ju Hyuk Lee, Hyun Nam Kim, Heon Yong Jeong, Sung Oh Cho, Optimization of shielding to reduce cosmic radiation damage to packaged semiconductors during air transport using Monte Carlo simulation, Nucl. Eng. Technol. 52 (2020) 1817-1825/.   DOI
34 M. Kurudirek, N.A. Chutithanapanon, R.A. Laopaiboon, C.H. Yenchai, C.H. Bootjomchai, Effect of Bi2O3 on gamma ray shielding and structural properties of borosilicate glasses recycled from high pressure sodium lamp glass, J. Alloys Compd. 745 (2018) 355-364, https://doi.org/10.1016/j.jallcom.2018.02.158. Elsevier B.V.May.   DOI
35 M.H.A. Mhareb, Muna Alqahtani, Fatimh Alshahri, Y.S.M. Alajerami, Noha Saleh, N. Alonizan, M.I. Sayyed, et al., The impact of barium oxide on physical, structural, optical, and shielding features of sodium zinc borate glass, J. Non-Cryst. Solids 541 (2020) 120090.   DOI
36 N.A. Razak, S. Hashim, M.H.A. Mhareb, Y.S.M. Alajerami, S.A. Azizan, N. Tamchek, Impact of Eu3+ ions on physical and optical properties of Li2ONa2O-B2O3 glass, Chin, J. Chem. Phys. 29 (3) (2016) 395.   DOI
37 E. Sakar, O.F. Ozgur, A. Bunyamin, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry, Radiat. Phys. Chem. 166 (2020) 108496.   DOI
38 J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM - the stopping and range of ions in matter, Nucl. Instrum. Methods B 268 (2010) 1818-1823.   DOI
39 J. Wood, Computational Methods in Reactor Shielding, Pergamon Press, Inc., New York, USA, 1982.
40 V.F. Sears, Neutron scattering lengths and cross section, Neutron News 3 (3) (1992) 26-37.   DOI
41 M.S. Al-Buriahi, M.I. Sayyed, Y. Al-Hadeethi, Role of TeO2 in radiation shielding characteristics of calcium boro-tellurite glasses 46 (2020) 13622-13629.   DOI