Browse > Article
http://dx.doi.org/10.1016/j.net.2021.05.030

Evaluation of photon radiation attenuation and buildup factors for energy absorption and exposure in some soils using EPICS2017 library  

Hila, F.C. (Materials Science and Engineering Program, College of Engineering, University of the Philippines Diliman)
Javier-Hila, A.M.V. (Department of Science and Technology - Philippine Nuclear Research Institute)
Sayyed, M.I. (Department of Nuclear Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman bin Faisal University (IAU))
Asuncion-Astronomo, A. (Department of Science and Technology - Philippine Nuclear Research Institute)
Dicen, G.P. (Department of Science and Technology - Philippine Nuclear Research Institute)
Jecong, J.F.M. (Department of Science and Technology - Philippine Nuclear Research Institute)
Guillermo, N.R.D. (Department of Science and Technology - Philippine Nuclear Research Institute)
Amorsolo, A.V. Jr. (Department of Mining, Metallurgical and Materials Engineering, College of Engineering, University of the Philippines Diliman)
Publication Information
Nuclear Engineering and Technology / v.53, no.11, 2021 , pp. 3808-3815 More about this Journal
Abstract
In this paper, the EPICS2017 photoatomic database was used to evaluate the photon mass attenuation coefficients and buildup factors of soils collected at different depths in the Philippine islands. The extraction and interpolation of the library was accomplished at the recommended linear-linear scales to obtain the incoherent and total cross section and mass attenuation coefficient. The buildup factors were evaluated using the G-P fitting method in ANSI/ANS-6.4.3. An agreement was achieved between XCOM, MCNP5, and EPICS2017 for the calculated mass attenuation coefficient values. The buildup factors were reported at several penetration depths within the standard energy grid. The highest values of both buildup factor classifications were found in the energy range between 100 and 400 keV where incoherent scattering interaction probabilities are predominant, and least at the region of predominant photoionization events. The buildup factors were examined as a function of different soil silica contents. The soil samples with larger silica concentrations were found to have higher buildup factor values and hence lower shielding characteristics, while conversely, those with the least silica contents have increased shielding characteristics brought by the increased proportions of the abundant heavier oxides.
Keywords
EABF; EBF; EPICS2017; Gamma ray; Mass attenuation coefficients; SiO2;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M.E. Medhat, N. Demir, U. Akar Tarim, O. Gurler, Calculation of gamma-ray mass attenuation coefficients of some Egyptian soil samples using Monte Carlo methods, Radiat. Eff. Defect Solid 169 (8) (2014) 706-714.   DOI
2 D.E. Cullen, A Survey of Photon Cross Section Data for Use in EPICS2017, IAEANDS-225, rev.1, 2018.
3 M.I. Sayyed, K.M. Kaky, M.H.A. Mhareb, A.H. Abdalsalam, N. Almousa, G. Shkoukani, M.A. Bourham, Borate multicomponent of bismuth rich glasses for gamma radiation shielding application, Radiat. Phys. Chem. 161 (2019a) 77-82.   DOI
4 D. Toyen, E. Wimolmala, N. Sombatsompop, T. Markpin, K. Saenboonruang, Sm2O3/UHMWPE composites for radiation shielding applications: mechanical and dielectric properties under gamma irradiation and thermal neutron shielding, Radiat. Phys. Chem. 164 (2019) 108366.   DOI
5 N. Demir, U.A. Tarim, M.A. Popovici, Z.N. Demirci, O. Gurler, I. Akkurt, Investigation of mass attenuation coefficients of water, concrete and bakelite at different energies using the FLUKA Monte Carlo code, J. Radioanal. Nucl. Chem. 298 (2) (2013) 1303-1307.   DOI
6 J.D. Brock, M. Sutton, Materials science and X-ray techniques, Mater. Today 11 (2008) 52-55.   DOI
7 G.E.P. Lopez, J.F. Madrid, L.V. Abad, Chromium and cadmium adsorption on radiation-grafted polypropylene copolymers: regeneration, kinetics, and continuous fixed bed column studies, SN Appl. Sci. 2 (3) (2020).
8 A. Madhu, B. Eraiah, N. Srinatha, Gamma irradiation effects on the structural, thermal and optical properties of samarium doped lanthanum-lead- borotellurite glasses, J. Lumin. 221 (2020) 117080.   DOI
9 S. Punia, S.B. Dhull, P. Kunner, S. Rohilla, Effect of γ-radiation on physicochemical, morphological and thermal characteristics of lotus seed (Nelumbo nucifera) starch, Int. J. Biol. Macromol. 157 (2020) 584-590.   DOI
10 C. Von Sonntag, Free-Radical-Induced DNA Damage and its Repair: A Chemical Perspective, Springer-Verlag, Berlin Heidelberg, 2006.
11 Y. Harima, H. Hirayama, Detailed behavior of exposure buildup factor in stratified shields for plane-normal and point isotropic sources, including the effects of bremsstrahlung and fluorescent radiation, Nucl. Sci. Eng. 113 (4) (1993) 367-378.   DOI
12 C. Tranquilan-Aranilla, B.J.D. Barba, L.S. Relleve, L.V. Abad, In vivo safety evaluation of granules and dressing hemostatic agents from radiation processed polymeric materials, Philipp. J. Sci. 149 (S1) (2020) 15-26.
13 L.A. Escalera-Velasco, J.R. Molina-Contreras, C.G. Hernandez-Murillo, H.A. De Leon-Martinez, H.R. Vega-Carrillo, J.A. Rodriguez-Rodriguez, I.A. Lopez-Salas, Shielding behavior of artisanal bricks against ionizing photons, Appl. Radiat. Isot. 161 (2020).
14 A. Trkov, M. Herman, D.A. Brown, ENDF-6 Formats Manual: Data Formats and Procedures for the Evaluated Nuclear Data Files, ENDF/B-VI and ENDF/B-VII, CSEWG Document ENDF-102, Report BNL-90365-2009 Rev. 2, Brookhaven National Laboratory, 2009.
15 F.C. Hila, G.P. Dicen, A.M.V. Javier-Hila, A. Asuncion-Astronomo, N.R.D. Guillermo, R.V. Rallos, I.A. Navarrete, A.V. Amorsolo JR., Determination of photon shielding parameters for soils in mangrove forests, Philipp. J. Sci. 150 (1) (2021) 245-256.
16 M.S. Al-Masri, M. Hasan, A. Al-Hamwi, Y. Amin, A.W. Doubal, Mass attenuation coefficients of soil and sediment samples using gamma energies from 46.5 to 1332 keV, J. Environ. Radioact. 116 (2013) 28-33.   DOI
17 Q. Zhang, Y. Guo, H. Bai, Y. Gu, Y. Xu, J. Zhao, L. Ge, Y. Peng, J. Liu, Determination of effective atomic numbers and mass attenuation coefficients of samples using in-situ energy-dispersive X-ray fluorescence analysis, X Ray Spectrom. 47 (1) (2017) 4-10.
18 M.E. Medhat, Application of gamma-ray transmission method for study the properties of cultivated soil, Ann. Nucl. Energy 40 (1) (2012) 53-59.   DOI
19 E. Kavaz, H.O. Tekin, N.Y. Yorgun, O.F. Ozdemir, M.I. Sayyed, Structural and nuclear radiation shielding properties of bauxite ore doped lithium borate glasses: experimental and Monte Carlo study, Radiat. Phys. Chem. 162 (2019) 187-193.   DOI
20 D.K. Gaikwad, M.I. Sayyed, S.S. Obaid, S.A.M. Issa, P.P. Pawar, Gamma ray shielding properties of TeO2-ZnF2-As2O3-Sm2O3 glasses, J. Alloys Compd. 765 (2018) 451-458.   DOI
21 Y. Harima, Y. Sakamoto, S. Tanaka, M. Kawai, Validity of the geometric-progression formula in approximating gamma-ray buildup factors, Nucl. Sci. Eng. 94 (1) (1986) 24-35.   DOI
22 D.A. Brown, M.B. Chadwick, R. Capote, A.C. Kahler, A. Trkov, M.W. Herman, Y. Zhu, ENDF/B-VIII.0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data, Nucl. Data Sheets 148 (2018) 1-142.   DOI
23 Ansi/Ans-6.4.3, Gamma Ray Attenuation Coefficient and Buildup Factors for Engineering Materials, American Nuclear Society La Grange Park, IL, 1991.
24 G.S. Mudahar, H.S. Sahota, Effective atomic number studies in different soils for total photon interaction in the energy region 10-5000 keV, Int. J. Radiat. Appl. Instrum. Part A 39 (12) (1988b) 1251-1254.   DOI
25 M. Kurudirek, B. Dogan, Y. Ozdemir, A.C. Moreira, C.R. Appoloni, Analysis of some Earth, Moon and Mars samples in terms of gamma ray energy absorption buildup factors: penetration depth, weight fraction of constituent elements and photon energy dependence, Radiat. Phys. Chem. 80 (3) (2011) 354-364.   DOI
26 K.S. Mann, T. Korkut, Gamma-ray buildup factors study for deep penetration in some silicates, Ann. Nucl. Energy 51 (2013) 81-93.   DOI
27 D.E. Cullen, EPICS2017: April 2019 Status Report, IAEA-NDS-228, rev.1, 2018.
28 G.P. Dicen, I.A. Navarrete, R.V. Rallos, S.G. Salmo, M.C.A. Garcia, The role of reactive iron in long-term carbon sequestration in mangrove sediments, J. Soils Sediments 19 (1) (2019) 501-510.   DOI
29 D.K. Gaikwad, M.I. Sayyed, S.N. Botewad, S.S. Obaid, Z.Y. Khattari, U.P. Gawai, F. Afaneh, M.D. Shirshat, P.P. Pawar, Physical, structural, optical investigation and shielding features of tungsten bismuth tellurite based glasses, J. NonCryst. Solids 503-504 (2019) 158-168.   DOI
30 F. Akman, V. Turan, M.I. Sayyed, F. Akdemir, M.R. Kacal, R. Durak, M.H.M. Zaid, Comprehensive study on evaluation of shielding parameters of selected soils by gamma and X-rays transmission in the range 13.94-88.04 keV using WinXCom and FFAST programs, Results Phys 15 (2019) 102751.   DOI
31 S.M. Vahabi, M. Bahreinipour, M. Shamsaie Zafarghandi, Determining the mass attenuation coefficients for some polymers using MCNP code: a comparison study, Vacuum 136 (2017) 73-76.   DOI
32 F.C. Hila, A.V. Amorsolo Jr., A.M.V. Javier-Hila, N.R.D. Guillermo, A simple spreadsheet program for calculating mass attenuation coefficients and shielding parameters based on EPICS2017 and EPDL97 photoatomic libraries, Radiat. Phys. Chem. 177 (2020).
33 G.S. Mudahar, H.S. Sahota, Soil: a radiation shielding material, Int. J. Radiat. Appl. Instrum. Part A 39 (1) (1988a) 21-24.   DOI
34 J.C. Costa, J.A.R. Borges, L.F. Pires, Soil bulk density evaluated by gamma-ray attenuation: analysis of system geometry, Soil Tillage Res. 129 (2013) 23-31.   DOI
35 E.A. Elias, O.O.S. Bacchi, K. Reichardt, Alternative soil particle-size analysis by gamma-ray attenuation, Soil Tillage Res. 52 (1-2) (1999) 121-123.   DOI
36 E.A. Elias, A simplified analytical procedure for soil particle-size analysis by gamma-ray attenuation, Comput. Electron. Agric. 42 (3) (2004) 181-184.   DOI
37 V.P. Singh, S.P. Shirmardi, M.E. Medhat, N.M. Badiger, Determination of mass attenuation coefficient for some polymers using Monte Carlo simulation, Vacuum 119 (2015) 284-288.   DOI
38 B.T. Tonguc, H. Arslan, M.S. Al-Buriahi, Studies on mass attenuation coefficients, effective atomic numbers and electron densities for some biomolecules, Radiat. Phys. Chem. 153 (2018) 86-91.   DOI
39 S.S. Obaid, M.I. Sayyed, D.K. Gaikwad, P.P. Pawar, Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications, Radiat. Phys. Chem. 148 (2018) 86-94.   DOI
40 M.I. Sayyed, M.Y. Alzaatreh, M.G. Dong, M.H.M. Zaid, K.A. Matori, H.O. Tekin, A comprehensive study of the energy absorption and exposure buildup factors of different bricks for gamma-rays shielding, Results Phys 7 (2017) 2528-2533.   DOI
41 L.F. Pires, Soil analysis using nuclear techniques: a literature review of the gamma ray attenuation method, Soil Tillage Res. 184 (2018) 216-234.   DOI
42 A.H. Taqi, Q.A.M. Al Nuaimy, G.A. Karem, Study of the properties of soil in Kirkuk, Iraq, J. Radiat. Res. Appl. Sci. 9 (3) (2016) 259-265.   DOI
43 C.R. Appoloni, E.A. Rios, Mass attenuation coefficients of Brazilian soils in the range 10-1450 keV, Appl. Radiat. Isot. 45 (3) (1994) 287-291.   DOI
44 M.E. Medhat, Comprehensive study of photon attenuation through different construction matters by Monte Carlo simulation, Radiat. Phys. Chem. 107 (2015) 65-74.   DOI
45 M.I. Sayyed, F. Akman, V. Turan, A. Araz, Evaluation of radiation absorption capacity of some soil samples, Radiochim. Acta 107 (1) (2019b) 83-93.   DOI
46 M.J. Berger, J.H. Hubbell, XCOM: Photon Cross Sections on a Personal Computer. NBSIR 87-3597, National Bureau of Standards, Gaithersburg, MD, 1987, 1987.
47 M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, K. Olsen, XCOM: Photon Cross Section Database (Version 1.5), National Institute of Standards and Technology, Gaithersburg, MD, 2010. http://physics.nist.gov/xcom [2020, October 24].
48 R.A.R. Bantan, M.I. Sayyed, K.A. Mahmoud, Y. Al-Hadeethi, Application of experimental measurements, Monte Carlo simulation and theoretical calculation to estimate the gamma ray shielding capacity of various natural rocks, Prog. Nucl. Energy 126 (2020) 103405.   DOI
49 H.R. Vega-Carrillo, K.A. Guzman-Garcia, J.A. Rodriguez-Rodriguez, C.A. Juarez-Alvarado, V.P. Singh, H.A. De Leon-Martinez, Photon and neutron shielding features of quarry tuff, Ann. Nucl. Energy 112 (2018) 411-417.   DOI
50 V.P. Singh, N.M. Badiger, A comprehensive study on gamma-ray exposure build-up factors and fast neutron removal cross sections of fly-ash bricks, J. Ceram. 2013 (2013) 1-13.
51 S.S. Obaid, D.K. Gaikwad, P.P. Pawar, Determination of gamma ray shielding parameters of rocks and concrete, Radiat. Phys. Chem. 144 (2018) 356-360.   DOI
52 Y. Harima, An approximation of gamma-ray buildup factors by modified geometrical progression, Nucl. Sci. Eng. 83 (2) (1983) 299-309.   DOI
53 S.S. Obaid, M.I. Sayyed, D.K. Gaikwad, H.O. Tekin, Y. Elmahroug, P.P. Pawar, Photon attenuation coefficients of different rock samples using MCNPX, Geant4 simulation codes and experimental results: a comparison study, Radiat. Eff. Defect Solid 173 (11-12) (2018) 900-914.   DOI
54 U. Akar Tarim, O. Gurler, E.N. Ozmutlu, S. Yalcin, Monte Carlo calculations for gamma-ray mass attenuation coefficients of some soil samples, Ann. Nucl. Energy 58 (2013) 198-201.   DOI
55 M.G. Dong, R. El-Mallawany, M.I. Sayyed, H.O. Tekin, Shielding properties of 80TeO2-5TiO2-(15-x) WO3-xAnOm glasses using WinXCom and MCNP5 code, Radiat. Phys. Chem. 141 (2017) 172-178.   DOI
56 M.N. Alam, M.M.H. Miah, M.I. Chowdhury, M. Kamal, S. Ghose, R. Rahman, Attenuation coefficients of soils and some building materials of Bangladesh in the energy range 276-1332 keV, Appl. Radiat. Isot. 54 (6) (2001) 973-976.   DOI
57 I.O. Olarinoye, R.I. Odiaga, S. Paul, EXABCal: a program for calculating photon exposure and energy absorption buildup factors, Heliyon 5 (7) (2019), e02017.   DOI