DOI QR코드

DOI QR Code

Investigation of photon, neutron and proton shielding features of H3BO3-ZnO-Na2O-BaO glass system

  • Mhareb, M.H.A. (Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University) ;
  • Alajerami, Y.S.M. (Medical Imaging Department, Applied Medical Sciences Faculty, Al Azhar University-Gaza) ;
  • Dwaikat, Nidal (Department of Physics, College of Sciences, King Fahd University of Petroleum & Minerals) ;
  • Al-Buriahi, M.S. (Department of Physics, Sakarya University) ;
  • Alqahtani, Muna (Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University) ;
  • Alshahri, Fatimh (Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University) ;
  • Saleh, Noha (Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University) ;
  • Alonizan, N. (Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University) ;
  • Saleh, M.A. (Nuclear Engineering Programme, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia) ;
  • Sayyed, M.I. (Department of Physics, Faculty of Science, Isra University)
  • 투고 : 2020.04.01
  • 심사 : 2020.07.26
  • 발행 : 2021.03.25

초록

The current study aims to explore the shielding properties of multi-component borate-based glass series. Seven glass-samples with composition of (80-y)H3BO3-10ZnO-10Na2O-yBaO where (y = 0, 5, 10, 15, 20, 25 and 30 mol.%) were synthesized by melt-quench method. Various shielding features for photons, neutrons, and protons were determined for all prepared samples. XCOM, Phy-X program, and SRIM code were performed to determine and explain several shielding properties such as equivalent atomic number, exposure build-up factor, specific gamma-ray constants, effective removal cross-section (ΣR), neutron scattering and absorption, Mass Stopping Power (MSP) and projected range. The energy ranges for photons and protons were 0.015-15 MeV and 0.01-10 MeV, respectively. The mass attenuation coefficient (μ/ρ) was also determined experimentally by utilizing two radioactive sources (166Ho and 137Cs). Consistent results were obtained between experimental and XCOM values in determining μ/ρ of the new glasses. The addition of BaO to the glass matrix led to enhance the μ/ρ and specific gamma-ray constants of glasses. Whereas the remarkable reductions in ΣR, MSP, and projected range values were reported with increasing BaO concentrations. The acquired results nominate the use of these glasses in different radiation shielding purposes.

키워드

과제정보

The authors gratefully acknowledge the use of the services and facilities of the Basic and Applied Scientific Research Center at Imam Abdulrahman Bin Faisal University and the authors also wish to thank Dr. Nidal Dwaikat who designed the gamma-ray irradiation system and carried out the experimental part in the Physics department at KFUPM.

참고문헌

  1. Ju Hyuk Lee, Hyun Nam Kim, Heon Yong Jeong, Sung Oh Cho, Optimization of shielding to reduce cosmic radiation damage to packaged semiconductors during air transport using Monte Carlo simulation, Nucl. Eng. Technol. 52 (2020) 1817-1825/. https://doi.org/10.1016/j.net.2020.01.016
  2. Tayfun Bel, Cuneyt Arslan, Nilgun Baydogan, Radiation shielding properties of poly (methyl methacrylate)/colemanite composite for the use in mixed irradiation fields of neutrons and gamma rays, Mater. Chem. Phys. 221 (2019) 58-67. https://doi.org/10.1016/j.matchemphys.2018.09.014
  3. M. Kh Hamad, M.H.A. Mhareb, Y.S. Alajerami, M.I. Sayyed, Gameel Saleh, Y. Maswadeh, KhA Ziq, Radiation shielding properties of Nd0.6Sr0.4Mn1-yNiyO3 substitute with different concentrations of nickle, Radiat. Phys. Chem. 174 (2020) 108920. https://doi.org/10.1016/j.radphyschem.2020.108920
  4. Y. Al-Hadeethi, M.I. Sayyed, Hiba Mohammed, Lia Rimondin, X-ray photons attenuation characteristics for two tellurite based glass systems at dental diagnostic energies, Ceram. Int. 46 (2020) 251-257. https://doi.org/10.1016/j.ceramint.2019.08.258
  5. Kawa M. Kaky, M.I. Sayyed, M.H.A. Mhareb, Alyaa H. Abdalsalam, K.A. Mahmoud, S.O. Baki, M.A. Mahdi, Physical, structural, optical and gamma radiation attenuation properties of germanate-tellurite glasses for shielding applications, J. Non-Cryst. Solids 545 (2020) 120250. https://doi.org/10.1016/j.jnoncrysol.2020.120250
  6. M.I. Sayyed, Alyaa H. Abdalsalam, Malaa M. Taki, M.H.A. Mhareb, Bunyamin Alim, Baltakesmez Ali, Erdem Sakar, MoO3 reinforced Ultra high molecular weight PE for neutrons shielding applications, Radiat. Phys. Chem. 172 (2020) 108852. https://doi.org/10.1016/j.radphyschem.2020.108852
  7. J. Lukovic, B. Babic, D. Bucevac, M. Prekajski, J. Pantic, Z. Bascarevic, B. Matovic, Synthesis and characterization of tungsten carbide fine powders, Ceram. Int. 41 (2015) 1271-1277, https://doi.org/10.1016/j.ceramint.2014.09.057.
  8. J.K. Shultis, R.E. Faw, Radiation shielding technology, Health Phys. 88 (2005) 587-612. https://doi.org/10.1097/01.HP.0000148615.73825.b1
  9. O. Agar, M.I. Sayyed, F. Akman, H.O. Tekin, M.R. Kacal, An extensive investigation on gamma ray shielding features of Pd/Ag-based alloys, Nucl. Eng. Technol. 51 (2019) 853-859. https://doi.org/10.1016/j.net.2018.12.014
  10. V.P. Singh, N.M. Badiger, N. Chanthima, J. Kaewkhao, Evaluation of gamma-ray exposure buildup factors and neutron shielding for bismuth borosilicate glasses, Radiat. Phys. Chem. 98 (2014) 14-21, https://doi.org/10.1016/j.radphyschem.2013.12.029. Elsevier.
  11. P. Kaur, D. Singh, T. Singh, Heavy metal oxide glasses as gamma rays shielding material, Nucl. Eng. Des. 307 (2016) 364-376. https://doi.org/10.1016/j.nucengdes.2016.07.029
  12. V.P. Singh, N.M. Badiger, J. Kaewkhao, Radiation shielding competence of silicate and borate heavy metal oxide glasses: comparative study, J. Non-Cryst. Solids 404 (2014) 167-173, https://doi.org/10.1016/j.jnoncrysol.2014.08.003. Elsevier B.V.
  13. M. Mariyappan K. Marimuthu, M.I. Sayyed, M.G. Dong, U. Kara, Effect Bi2O3 on the physical, structural and radiation shielding properties of Er3+ ions doped bismuth sodium fluoroborate glasses, J. Non-Cryst. Solids 499 (2018) 75-85. https://doi.org/10.1016/j.jnoncrysol.2018.07.025
  14. M.H.A. Mhareb, Physical, optical and shielding features of Li2O-B2O3-MgOEr2O3 glasses co-doped of Sm2O3, Appl Phys-A Mater. 126 (2020) 71. https://doi.org/10.1007/s00339-019-3262-9
  15. El-Mallawany, M.I. Sayyed, Comparative shielding properties of some tellurite glasses: part 1, Phys. B Condens. Matter 539 (2018) 133-140. https://doi.org/10.1016/j.physb.2017.05.021
  16. El-Mallawany, M.I. Sayyed, Comparative shielding properties of some tellurite glasses: part 1, Phys. B Condens. Matter 539 (2018) 133-140. https://doi.org/10.1016/j.physb.2017.05.021
  17. Y.S. Alajerami, D. Drabold, M.H.A. Mhareb, K.L.A. Cimatu, G. Chen, M. Kurudirek, Radiation shielding properties of bismuth borate glasses doped with different concentrations of cadmium oxides, Ceram. Int. 46 (2020) 12718-12726. https://doi.org/10.1016/j.ceramint.2020.02.039
  18. M. Kurudirek, N.A. Chutithanapanon, R.A. Laopaiboon, C.H. Yenchai, C.H. Bootjomchai, Effect of Bi2O3 on gamma ray shielding and structural properties of borosilicate glasses recycled from high pressure sodium lamp glass, J. Alloys Compd. 745 (2018) 355-364, https://doi.org/10.1016/j.jallcom.2018.02.158. Elsevier B.V.May.
  19. K.M. Kaky, M.I. Sayyed, Abbas Khammas, Ashok Kumar, Erdem S, akar, Alyaa H. Abdalsalam, Betul Cevi_z S, akar, Bunyamin Alim, M.H.A. Mhareb, Theoretical and experimental validation gamma shielding properties of B2O3-ZnOeMgOeBi2O3 glass system, Mater. Chem. Phys. 242 (2020) 122504. https://doi.org/10.1016/j.matchemphys.2019.122504
  20. C.K. Mahapatra, S.V. Barai, Hybrid fiber reinforced self compacting concrete with fly ash and colloidal nano silica : a systematic study, Construct. Build. Mater. 160 (2018) 828-838, https://doi.org/10.1016/j.conbuildmat.2017.11.131. Elsevier Ltd.
  21. M.H.A. Mhareb, Muna Alqahtani, Fatimh Alshahri, Y.S.M. Alajerami, Noha Saleh, N. Alonizan, M.I. Sayyed, et al., The impact of barium oxide on physical, structural, optical, and shielding features of sodium zinc borate glass, J. Non-Cryst. Solids 541 (2020) 120090. https://doi.org/10.1016/j.jnoncrysol.2020.120090
  22. K. Kirdsiri, J. Kaewkhao, A. Pokaipisit, W. Chewpraditkul, P. Limsuwan, Gamma-rays shielding properties of xPbO:(100x) B2O3 glasses system at 662 keV, Ann. Nucl. Energy 36 (9) (2009) 1360-1365. https://doi.org/10.1016/j.anucene.2009.06.019
  23. E.R. Shaaban, M. Shapaan, Y.B. Saddeek, Structural and thermal stability criteria of Bi2O3-B2O3 glasses, J. Phys. Condens. Matter 20 (15) (2008) 155108. https://doi.org/10.1088/0953-8984/20/15/155108
  24. F. Gaber, M. El-Sarraf, W. Kansouh, Utilization of boron oxide glass and epoxy/ ilmenite assembly as two layer shield, Ann. Nucl. Energy 57 (2013) 106-110. https://doi.org/10.1016/j.anucene.2013.01.036
  25. R. Bagheri, A.K. Moghaddam, H. Yousefnia, Gamma ray shielding study of bariume-bismuthe-borosilicate glasses as transparent shielding materials using MCNP-4C code, XCOM program, and available experimental data, Nucl. Eng. Technol. 49 (2017) 216-223. https://doi.org/10.1016/j.net.2016.08.013
  26. S. Sukhpal, A. Kumar, D. Singh, K.S. Thind, G.S. Mudahar, Bariumeborateeflyash glasses: as radiation shielding materials, Nucl. Instrum. Methods B 266 (2008) 140-146. https://doi.org/10.1016/j.nimb.2007.10.018
  27. N.A. Razak, S. Hashim, M.H.A. Mhareb, Y.S.M. Alajerami, S.A. Azizan, N. Tamchek, Impact of Eu3+ ions on physical and optical properties of Li2ONa2O-B2O3 glass, Chin, J. Chem. Phys. 29 (3) (2016) 395. https://doi.org/10.1063/1674-0068/29/cjcp1511226
  28. Mohd Zaid, Mohd Hafiz, et al., Effect of ZnO on the physical properties and optical band gap of soda lime silicate glass, Int. J. Mol. Sci. 13 (2012) 7550-7558. https://doi.org/10.3390/ijms13067550
  29. M.J. Berger, J.H. Hubbell, XCOM: Photon Cross Sections on a Personal Computer. No. NBSIR-87-3597, National Bureau of Standards, Washington, DC (USA), 1987. Center for Radiation Research.
  30. E. Sakar, O.F. Ozgur, A. Bunyamin, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry, Radiat. Phys. Chem. 166 (2020) 108496. https://doi.org/10.1016/j.radphyschem.2019.108496
  31. M.F. Kaplan, Concrete Radiation Shielding, John Wiley and Sons., New York, USA, 1989.
  32. J. Wood, Computational Methods in Reactor Shielding, Pergamon Press, Inc., New York, USA, 1982.
  33. V.F. Sears, Neutron scattering lengths and cross section, Neutron News 3 (3) (1992) 26-37. https://doi.org/10.1080/10448639208218770
  34. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM - the stopping and range of ions in matter, Nucl. Instrum. Methods B 268 (2010) 1818-1823. https://doi.org/10.1016/j.nimb.2010.02.091
  35. L. William Oberkampf, Matthew F. Barone, Measures of agreement between computation and experiment: validation metrics, J. Comput. Phys. 217 (1) (2006) 5-36. https://doi.org/10.1016/j.jcp.2006.03.037
  36. M.S. Al-Buriahi, M.I. Sayyed, Y. Al-Hadeethi, Role of TeO2 in radiation shielding characteristics of calcium boro-tellurite glasses 46 (2020) 13622-13629. https://doi.org/10.1016/j.ceramint.2020.02.148
  37. M.S. Al-Buriahi, C. Sriwunkum, A. Halil, T.T. Baris, A.B. Mohamed, Investigation of barium borate glasses for radiation shielding applications, Appl Phys-A Mater. 126 (1) (2020) 1-9. https://doi.org/10.1007/s00339-019-3176-6
  38. M.I. Sayyed, A. Hakan, M.S. Al-Buriahi, L. Eloic, A. Rachid, B. Giovanni, Oxyfluoro-tellurite-zinc glasses and the nuclear-shielding ability under the substitution of AlF3 by ZnO, Appl Phys-A Mater. 126 (2) (2020) 1-12. https://doi.org/10.1007/s00339-019-3176-6
  39. American National Standard, Gamma-Ray Attenuation Coefficients and Buildup Factors for Engineering Materials, 1991. ANSI/ANS-6.4.3.
  40. I.O. Olarinoye, R.I. Odiaga, S. Paul, EXABCal: a program for calculating photon exposure and energy absorption buildup factors, Heliyon 5 (2019), e02017. https://doi.org/10.1016/j.heliyon.2019.e02017
  41. Volodymyr Mosorov, The Lambert-Beer law in time domain form and its application, Appl. Radiat. Isot. 128 (2017) 1-5, https://doi.org/10.1016/j.apradiso.2017.06.039.

피인용 문헌

  1. Impact of Bi 2 O 3 modifier concentration on barium–zincborate glasses: physical, structural, elastic, and radiation-shielding properties vol.136, pp.1, 2021, https://doi.org/10.1140/epjp/s13360-020-01056-6
  2. Study on the Optical Properties of High Refractive Index TeO2-PbO-ZnO-BaF2 Glass System vol.2021, 2021, https://doi.org/10.1155/2021/6466344
  3. Structural, optical and radiation shielding properties of Zirconium–Titanium–Thallium Ternary Oxide (0.5ZrO2-(0.5-x)TiO2-xTl2O3) vol.47, pp.15, 2021, https://doi.org/10.1016/j.ceramint.2021.04.201
  4. Gamma radiation shielding traits of B2O3-Bi2O3-CdO-BaO-PbO glasses vol.191, 2021, https://doi.org/10.1016/j.radphyschem.2021.109836
  5. Gamma irradiation effects on styrene butadiene rubber/Pb3O4: Mechanical, thermal, electrical investigations and shielding parameter measurements vol.192, 2021, https://doi.org/10.1016/j.radphyschem.2021.109897