• Title/Summary/Keyword: Photoluminescence properties

Search Result 897, Processing Time 0.027 seconds

Simple Fabrication of Green Emission and Water-Resistant CsPbBr3 Encapsulation Using Commercial Glass Frits (상업용 유리프릿의 소결 공정을 이용한 내수성을 갖는 CsPbBr3/Glass 세라믹 복합체의 제작)

  • Mun, Na-eun;Kim, Sunghoon
    • Korean Journal of Materials Research
    • /
    • v.31 no.1
    • /
    • pp.54-59
    • /
    • 2021
  • In this work, narrow-band green-emitting CsPbBr3 particles are embedded in commercialized glass composites by a facile dry process. By optimizing the method through sintering in glass frit (GF) composites including CsBr and PbBr2, used as precursors, the encapsulation of CsPbBr3 particles made them waterproof with green fluorescence. To improve the fluorescent properties by reducing aggregation of CsPbBr3, fumed silica (FS) is additionally used to help particles avoid bulking up in the glass matrix. The CsPbBr3 perovskite/glass composites are characterized using scanning electron microscopy (SEM) images and energy-dispersive X-ray spectroscopy (EDS) maps, which support the existence of CsPbBr3 particles in the glass matrix. The photoluminescence (PL) properties demonstrate that the emission spectrum peak, full width at half maximum (FWHM), and photoluminescence quantum yield (PLQY) values are 519 nm, 17 nm, and 17.7 %. We also confirm the water-resistant properties. To enhance water/moisture stability, the composite sample is put directly into water, with its PLQY monitored periodically under UV light.

D-$\Pi$-A designed dye chromophores and nanoparticles: optical properties, chemosensor effects and PE/Aramid fiber colorations

  • Son, Young-A;Kim, Su-Ho;Kim, Young-Sung
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2010.03a
    • /
    • pp.40-40
    • /
    • 2010
  • Studies on attractive color changing property of dye chromophore and fluorophore have been greatly enjoyed in the related industrial and research fields such as optoelectronics, chemosensor, biosensor and so on. The optical property based on D-$\Pi$-A intramolecular charge transfer (ICT) system of chromophore molecules can be utilized as suitable sensing probes for checking media polarity and determining colorimetric chemosensing effect, especially heavy metal detection. These finding are obtained by absorption and emission properties. In this work, donor-acceptor D-$\Pi$-A type fluorescent dyes were designed and synthesized with the corresponding donor and acceptor groups. The selected donor moieties might be provided prominent amorphous properties which are very useful in designing and synthesizing functional polymers and in fabricating devices. Another reasons to choose are commercial availabilities in high purity and low price. Donor-bridge-acceptor (D-A) type dyes can produce impressive optical-physical properties, yielding them potentially suitable for applications in the synthesis of small functional organic molecules. Small organic functional molecules have unique advantages, such as better solubility, amorphous character, and represent an area of research which needs to be explored and developed. Currently, their applications in metalorganic compounds is rapidly expanding and becoming widespread in self-assembly processes, photoluminescence applications, chiral organocatalysts, and ingrafts with nanomaterials. Colloidal nanoparticles have received great attentions in recent years. The photophysical properties of nanoparticles, particularly in terms of brightness, photostability, emission color purity and broad adsorption range, are very attractive functions in many applications. To our knowledge background, colloidal nanoparticles have been enjoyed their applications in bio-probe research fields. This research interest can be raised by the advantages of the materials such as high photoluminescence quantum yields, sharp emission band, long-term photostability and broad excitation spectra. In recent, the uses of nanoparticles being embedded in a polymer matrix and binded on polymer surface have been explored and their properties such as photo-activation and strong photoluminescence have been proposed. The prepared chromophores and nanoparticles were investigated with absorption and emission properties, solvatochromic behaviors, pH induced color switching effects, chemosensing effects and HOMO/LUMO energy potentials with computer simulation. In addition, synthesized fluorophore dyes and particles were applied onto PE/Aramid fiber fluorescing colorations. And the related details were then discussed.

  • PDF

Post annealing effect on the photoluminescence properties of ZnO thin films prepared by atomic layer epitaxy (Atomic Layer Epitaxy에 의해 제작된 ZnO 박막의 후열처리에 따른 발광특성 연구)

  • 신경철;임종민;강승모;이종무
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.3
    • /
    • pp.103-108
    • /
    • 2004
  • High-quality ZnO films were grown on sapphire (001) substrates by the atomic layer epitaxy (ALE) technique using DEZn as a Zinc precusor and $H_2O $ as an oxidant at both $170^{\circ}C$ and $400^{\circ}C$ which are in the ALE and the CVD process temperature ranges, respectively. The films were annealed in an oxygen atmosphere in the temperature range from 600 to 100$0^{\circ}C$ for an hour and then investigate photoluminescence (PL) properties using He-Cd laser. PL intensity tends to increases as the annealing temperature increase for both the annealed ZnO films grown at $170^{\circ}C$ and $400^{\circ}C$ , while PL did not nearly occur at the as-deposited ones. The PL intensity of the ZnO film grown at $400^{\circ}C$ is low after it is annealed at high temperature owing to a large number of Zn-Zn bonds although it has increased in the visible light wavelength region after annealing. In contrast the PL intensity has increased significant in the visible light region after annealing

Optical properties of Rare-Earth-Implanted GaN Epilayer (희토류 원소를 이온주입법으로 도핑한 GaN 박막의 광전이 특성)

  • Kim, Yong-Min
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.3
    • /
    • pp.210-214
    • /
    • 2007
  • We have studied optical transitions of Gd-implanted GaN epilayers. Photoluminescence transition intensity at 590 nm at T=5 K diminishes and its center position moves to short avelength (blue shift) with increasing temperature up to 200 K. Above T=200 K, the transition intensity increases with increasing temperature while the center position remains the same. We believe that such anomalous optical transition behavior is due to the effect of rare-element in the semiconductor host material and lattice imperfection which was occurred during the implantation process well as.

Luminescent Characteristics of Bi Co-doped ZnS:Mn Yellow Phosphors for White Light Emitting Diodes (Bi를 첨가한 백색 LED용 ZnS:Mn 황색형광체의 발광특성)

  • Jung, Jong-Hun;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.46-49
    • /
    • 2011
  • Bi co-doped ZnS:Mn,Bi yellow phosphors for white light emitting diodes were prepared by the conventional solidstate reaction method. The optical and structural properties of ZnS:Mn,Bi phosphors were investigated by x-ray diffraction, scanning electro microscopy and photoluminescence. ZnS:Mn,Bi phosphors showed XRD patterns of hexagonal structure. The photoluminescence of ZnS:Mn,Bi phosphors showed spectra extending from 480 to 700 nm, peaking at 580 nm. The photoluminescence of 580 nm in the ZnS:Mn,Bi phosphors was associated with the 4T1 ${\rightarrow}$ 6A1 transition of the Mn2+ ions. The highest photoluminescent intensity of the phosphors under 405 nm and 450 nm excitation was obtained at Bi concentration of 7mol%. The optimum mixing conditions with epoxy and yellow phosphor for white light emitting diodes were observed in a ratio of epoxy:yellow phosphor of 1:3.5. The CIE chromaticity of the white LED at the 1:3.5 ratio was X = 0.3454 and Y = 0.2449.

Synthesis and Photoluminescence Properties of ZrO2:Eu3+ Nanoparticles Using Salt-Assisted Ultrasonic Pyrolysis Process (염 보조 초음파 분무 열분해법을 이용한 ZrO2:Eu3+ 나노입자의 합성 및 발광 특성)

  • Hwangbo, Young;Lim, Hyo Ryoung;Lee, Young-In
    • Korean Journal of Materials Research
    • /
    • v.27 no.5
    • /
    • pp.270-275
    • /
    • 2017
  • Inorganic phosphors based on $ZrO_2:Eu^{3+}$ nanoparticles were synthesized by a salt-assisted ultrasonic spray pyrolysis process that is suitable for industrially-scalable production because of its continuous nature and because it does not require expensive precursors, long reaction time, physical templates or surfactant. This facile process results in the formation of tiny, highly crystalline spherical nanoparticles without hard agglomeration. The powder X-ray diffraction patterns of the $ZrO_2:Eu^{3+}$ (1-20 mol%) confirmed the body centered tetragonal phase. The average particle size, estimated from the Scherrer equation and from TEM images, was found to be approximately 11 nm. Photoluminescence (PL) emission was recorded under 266 nm excitation and shows an intense emission peak at 607 nm, along with other emission peaks at 580, 592 and 632 nm which are indicated in red.

Photoluminescence Studies of ZnO Thin Films on Porous Silicon Grown by Plasma-Assisted Molecular Beam Epitaxy

  • Kim, Min-Su;Nam, Gi-Woong;Kim, So-A-Ram;Lee, Dong-Yul;Kim, Jin-Soo;Kim, Jong-Su;Son, Jeong-Sik;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.310-310
    • /
    • 2012
  • ZnO thin films were grown on porous silicon (PS) by plasma-assisted molecular beam epitaxy (PA-MBE). The optical properties of the ZnO thin films grown on PS were studied using room-temperature, low-temperature, and temperature-dependent photoluminescence (PL). The full width at half maximum (FWHM) of the near-band-edge emission (NBE) from the ZnO thin films was 98 meV, which was much smaller than that of ZnO thin films grown on a Si substrate. This value was even smaller than that of ZnO thin films grown on a sapphire substrate. The Huang-Rhys factor S associated with the free exciton (FX) emission from the ZnO thin films was found to be 0.124. The Eg(0) value obtained from the fitting was 3.37 eV, with ${\alpha}=3.3{\times}10^{-2}eV/K$ and ${\beta}=8.6{\times}10^3K$. The low- and high-temperature activation energies were 9 and 28 meV, respectively. The exciton radiative lifetime of the ZnO thin films showed a non-linear behavior, which was established using a quadratic equation.

  • PDF

A Study on the Optical Properties of HgGa2S4 Single Crystal (HgGa2S4 단결정의 광학적 특성연구)

  • 이관교;이상열;강종욱;이봉주;김형곤;현승철;방태환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.11
    • /
    • pp.969-974
    • /
    • 2003
  • HgGa$_2$S$_4$ single crystals were grown by the chemical transport reaction method. The HgGa$_2$S$_4$ single crystal crystallized into a defect chalcopyrite structure (I 4). The lattice constants of the single crystal were found to be a = 5.635 $\AA$ and c = 10.473 $\AA$. The direct and indirect optical energy gaps were found to be 2.84eV and 2.78eV, respectively. Photoluminescence peaks of HgGa$_2$S$_4$ single crystal were observed at 2.37 eV, 2.18 eV, and 1.81 eV. In the single crystal, the donor level of 0.25 eV, the acceptor levels of 0.97 eV and 0.41 eV were obtained by TSC, PICTS, and absorption measurements. The photoluminescence peaks were analyzed to relate to the indirect conduction band, the donor level, and the acceptor levels.

Synthesis and Photo Luminescent Characteristics of SrAl2O4:Eu2+,Dy3+ Phosphor using Polymer Matrix (폴리머 매트릭스를 전구체로 사용한 SrAl2O4:Eu2+,Dy3+ 축광성 형광체의 합성 및 형광 특성)

  • Kim, Soo-Jong;Kwon, Hyuk-Sil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.8
    • /
    • pp.671-679
    • /
    • 2007
  • [ $SrAl_2O_4:Eu^{2+},\;Dy^{3+}$ ] phosphor was synthesized using the impregnation method, and its photoluminescence and long-afterglow properties were investigated, A mixture of $Sr(NO_3)_2,\;Al(NO_3)_2\;9H_2O,\;EuCl_3\;6H_2O,\;DyCl_3\;6H_2O,\;NdCl_3\;6H_2O$ salts were dissolved in distilled water and impregnating into the polymer precursor. After drying, the impregnated mixture was heat treated at $900-1400^{\circ}C$ for 2h in a $N_2-H_2$ reduction atmosphere. The microstructure and crystal structure of the $SrAl_2O_4:Eu^{2+},\;Dy^{3+}$ powders were examined by scanning electron microscopy and X-ray diffraction, respectively. The photoluminescence spectra showed an excitation band along over wide wavelength of 250-450nm, and a broaden emission with a maxima peak at 360nm. In addition, the spectra also showed a good long after glow that decayed over a 1000sec period after 10 min excitation illumination.

Optical properties of $HgGa_2S_4$ single crystal ($HgGa_2S_4$ 단결정의 광학적 특성)

  • Kim, H.G.;Kim, N.O.;Kim, B.C.;Choi, Y.I.;Kim, D.T.;Hyun, S.C.;Bang, T.H.;Lee, K.S.;Gu, H.B.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05c
    • /
    • pp.47-52
    • /
    • 2004
  • $HgGa_2S_4$ single crystals were grown by the chemical transport reaction method. The $HgGa_2S_4$ single crystal crystallized into a defect chalcopyrite structure $(I\bar{4})$. The lattice constants of the single crystal were found to be a=5.635 ${\AA}$ and c=10.473 ${\AA}$. The direct and indirect optical energy gaps were found to be 2.84 eV and 2.78 eV, respectively. Photoluminescence peaks of $HgGa_2S_4$ single crystal were observed at 2.37 eV, 2.18 eV, and 1.81 eV. In the single crystal, the donor level of 0.25 eV, the acceptor levels of 0.97 eV and 0.41 eV were obtained by TSC, PICTS, and absorption measurements. The photoluminescence peaks were analyzed to relate to the indirect conduction band, the donor level, and the acceptor levels.

  • PDF