• Title/Summary/Keyword: Photodiode

Search Result 527, Processing Time 0.029 seconds

Performance of an InAs/GaSb Type-II Superlattice Photodiode with Si3N4 Surface Passivation

  • Kim, Ha Sul
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.129-133
    • /
    • 2021
  • This study observed the performance of an InAs/GaSb type-II superlattice photodiode with a p-i-n structure for mid-wavelength infrared detection. The 10 ML InAs/10 ML GaSb type-II superlattice photodiode was grown using molecular beam epitaxy. The cutoff wavelength of the manufactured photodiode with Si3N4 passivation on the mesa sidewall was determined to be approximately 5.4 and 5.5 ㎛ at 30 K and 77 K, respectively. At a bias of -50 mV, the dark-current density for the Si3N4-passivated diode was measured to be 7.9 × 10-5 and 1.1 × 10-4 A/㎠ at 77 K and 100 K, respectively. The differential resistance-area product RdA at a bias of -0.15 V was 1481 and 1056 Ω ㎠ at 77 K and 100 K, respectively. The measured detectivity from a blackbody source at 800 K was calculated to be 1.1 × 1010 cm Hz1/2/W at zero bias and 77 K.

High-sensitivity NIR Sensing with Stacked Photodiode Architecture

  • Hyunjoon Sung;Yunkyung Kim
    • Current Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.200-206
    • /
    • 2023
  • Near-infrared (NIR) sensing technology using CMOS image sensors is used in many applications, including automobiles, biological inspection, surveillance, and mobile devices. An intuitive way to improve NIR sensitivity is to thicken the light absorption layer (silicon). However, thickened silicon lacks NIR sensitivity and has other disadvantages, such as diminished optical performance (e.g. crosstalk) and difficulty in processing. In this paper, a pixel structure for NIR sensing using a stacked CMOS image sensor is introduced. There are two photodetection layers, a conventional layer and a bottom photodiode, in the stacked CMOS image sensor. The bottom photodiode is used as the NIR absorption layer. Therefore, the suggested pixel structure does not change the thickness of the conventional photodiode. To verify the suggested pixel structure, sensitivity was simulated using an optical simulator. As a result, the sensitivity was improved by a maximum of 130% and 160% at wavelengths of 850 nm and 940 nm, respectively, with a pixel size of 1.2 ㎛. Therefore, the proposed pixel structure is useful for NIR sensing without thickening the silicon.

Implementation of Popular Radon Detector Using Pin Photodiode (핀 포토다이오드를 이용한 보급형 라돈 검출기의 구현)

  • Yun, Sung-Ha;Kim, Jae-Hak;Kim, Gyu-Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.99-106
    • /
    • 2016
  • When radon is staying at alveoli and bronchial tubes, the collapse of radon creates progeny nuclides (alpha ray, beta ray, gamma ray, etc.). They emit radiation causing a mutation in the chromosome of the cell, resulting in lung cancer. In other words, the main cause of lung cancer is radiation emitting as the result of radon collapse rather than radon gas. The 82% of radiation exposed to people is the natural radiation. Most of the natural radiation is radon. If we properly control the concentration of radon indoors, the probability of occurrence of lung cancer could be decreases to be 70%. Until now, to measure the indoor radon concentration, imported radon sensors are needed. So, DB construction of indoor radon emission and popular radon measuring apparatus should be developed. In this paper, we propose the radon detecting method using PIN photodiode. Also, we confirmed the PIN photodiode could be used as radon sensor module through some experimental studies.

A study on the amorphous s-i-n photodiode integrated with CMO IC (CMOS IC와 집적 가능한 비정질 p-i-n 광 수신기 제작에 관한 연구)

  • Kwak, Chol-Ho;Yoo, Hoi-Jun;Jang, Jin;Moon, Byoung-Yeon
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.6
    • /
    • pp.500-505
    • /
    • 1997
  • Experimental amorphous photodiode is fabricated on CMOS IC using a-Si:H p-i-n structure. Amorphous photodiode is scuccessfully integrated on CMOS IC using amorphous Si produced by PECVD system. The PECVD system can deposit a-Si:H at low temperature so that photodiode can be integrated with CMOS IC structure without any process incompatibility. The fabricated amorphous photodiode has a breakdown voltage of below -20 V, a leakage current of about 1 $\mu\textrm{A}$, and turn-on voltage of 0.6~0.8 V. It is demonstrated that the photocurrent of optical signal can be turned on and off by a small voltage and the fabricated amorphous p-i-n photodiode can be used as an optical switch.

  • PDF

Study on Sensitivity of Burst-Mode Optical Receiver Depending on Photodiode Capacitance (포토다이오드의 정전용량에 따른 버스트모드 광 수신소자의 수신감도 연구)

  • Lee, Jung-Moon;Kim, Chang-Bong
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.5
    • /
    • pp.343-348
    • /
    • 2008
  • This study was carried out to commercialize FTTH by developing a burst mode optical receiver for E-PON. The optical receiver was manufactured by minimizing the capacitance of a photodiode to improve sensitivity for meeting 10, 20 km OLT Rx standard of E-PON at the transmission speed of 1.25 Gb/s. When bit-error ratio is $10^{-12}$ and PRBS is $2^5-1$, sensitivity is -26 dBm, loud/soft ratio is 23 dB. Both preamble time and guard time were set to 102.4 ns (128 bit). After comparing a photodiode whose capacitance is 0.53 pF with another photodiode whose capacitance has been minimized to 0.26 pF, we could see that sensitivity improved to 0.7 dBm and so did bandwidth to 190 MHz of burst mode for the optical receiver manufactured by the photodiode whose capacitance is 0.26 pF.

Improved photoresponsivity of AlGaN UV photodiode using antireflective nanostructure (반사방지 나노 구조체를 이용한 AlGaN UV 광다이오드의 광반응도 향상)

  • Dac, Duc Chu;Choi, June-Heang;Kim, Jeong-Jin;Cha, Ho-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.10
    • /
    • pp.1306-1311
    • /
    • 2020
  • In this study, we proposed an anti-reflective nano-structure to improve the photoresponsivity of AlGaN UV photodiode that can be used as a receiver in a solar blind UV optical communication system. The anti-reflective nano-structure was fabricated by forming Ni nano-clusters on SiO2 film followed by etching the underneath SiO2 film. A sample with the anti-reflective nano-structure exhibited lower surface reflection along with less dependency on the wavelength in comparison with a sample without the nano-structure. Finally, a UV photodiode was fabricated by applying an anti-reflective structure produced by heat-treating a 2 nm-thick Ni layer. The photodiode fabricated with the proposed nano-structure exhibited noticeable improvement in the photoresponsivity at the wavelength range from 240 nm to 270 nm in comparison with the same photodiode with a SiO2 film without the nano-structure.

Implementation of Electronic Personal Dosimeter Using Silicon PIN Photodiode (실리콘 핀 포토다이오드를 이용한 능동형 방사선 피폭 전자선량계의 구현)

  • 이운근;백광렬;권석근
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.4
    • /
    • pp.296-303
    • /
    • 2003
  • A personal portable type electronic dosimeter using silicon PIN photodiode and small GM tube is recently attracting much attention due to its advantages such as an immediate indication function of dose and dose rate, alerting function, and efficient management of radiation exposure history and dose data. We designed and manufactured a semiconductor radiation detector aimed to directly measure X-ray and v-ray irradiated in silicon PIN photodiode, without using high-priced scintillation materials. Using this semiconductor radiation detector, we developed an active electronic dosimeter, which measures the exposure dose using pulse counting method. In this case, it has a shortcoming of over-evaluating the dose that shows the difference between the dose measured with electronic dosimeter and the dose exposed to the human body in a low energy area. We proposed an energy compensation filter and developed a dose conversion algorithm to make both doses indicated on the detector and exposed to the human body proportional to each other, thus enabling a high-precision dose measurement. In order to prove its reliability in conducting personal dose measurement, crucial for protecting against radiation, the implemented electronic dosimeter was evaluated to successfully meet the IEC's criteria, as the KAERI (Korea Atomic Energy Research Institute) conducted test on dose indication accuracy, and linearity, energy and angular dependences.

녹색형광단백질로 구성된 분자광다이오드의 전자전달 특성

  • Nam, Yun-Seok;Choe, Jeong-U;Lee, Won-Hong
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.149-152
    • /
    • 2000
  • In recent years, various artificial molecular photodiode have been fabricated by mimicking the electron transport function of biological photosynthesis. And now, we have been investigated the protein-organic hetero thin film photodiode using GFP as an sensitizer based on the redox potential difference of functional molecules. In this paper, shows molecular photodiode consisting of green fluorescence protein(GFP). viologen and TCNQ. The TCNQ and viologen were deposited onto ITO coated glass by LB technique. And GFP molecule was adsorption onto the viologen LB film surface by self-assembly method. Finally, The Al deposition onto GFP/viologen/TCNQ film surface was performed to make a top electrode. As a result, The MIM(metal/Insulator/Metal) structured device was constructed. The input light of 460nm wavelength was generated by the xenon lamp system, and then the photocurrent produced from the molecular device was detected through a current-voltage(I-V) measuring unit (SMU Model 236, Keithley, USA). An artificial molecular photodiode using protein(GFP)-adsorbed hetero-LB film is presented as a model system for the bioelectronic device based on the biomimesis.

  • PDF