DOI QR코드

DOI QR Code

Performance of an InAs/GaSb Type-II Superlattice Photodiode with Si3N4 Surface Passivation

  • Kim, Ha Sul (Department of Physics, Chonnam National University)
  • Received : 2020.11.27
  • Accepted : 2021.01.22
  • Published : 2021.04.25

Abstract

This study observed the performance of an InAs/GaSb type-II superlattice photodiode with a p-i-n structure for mid-wavelength infrared detection. The 10 ML InAs/10 ML GaSb type-II superlattice photodiode was grown using molecular beam epitaxy. The cutoff wavelength of the manufactured photodiode with Si3N4 passivation on the mesa sidewall was determined to be approximately 5.4 and 5.5 ㎛ at 30 K and 77 K, respectively. At a bias of -50 mV, the dark-current density for the Si3N4-passivated diode was measured to be 7.9 × 10-5 and 1.1 × 10-4 A/㎠ at 77 K and 100 K, respectively. The differential resistance-area product RdA at a bias of -0.15 V was 1481 and 1056 Ω ㎠ at 77 K and 100 K, respectively. The measured detectivity from a blackbody source at 800 K was calculated to be 1.1 × 1010 cm Hz1/2/W at zero bias and 77 K.

Keywords

References

  1. A. Rogalki, "Next decade in infrared detectors," Proc. SPIE 10433, 104330L (2017).
  2. B. V. Olson, C. H. Grein, J. K. Kim, E. A. Kadlec, J. F. Klem, S. D. Hawkins, and E. A. Shaner, "Auger recombination in long-wave infrared InAs/InAsSb type-II superlattices," Appl. Phys. Lett. 107, 261104 (2015). https://doi.org/10.1063/1.4939147
  3. A. Rogalski, P. Martyniuk, and M. Kopytko, "InAs/GaSb type-II superlattice infrared detectors: Future prospect," Appl. Phys. Rev. 4, 031304 (2017). https://doi.org/10.1063/1.4999077
  4. J. B. Rodriguez, E. Plis, G. Bishop, Y. D. Sharma, H. Kim, L. R. Dawson, and S. Krishna, "nBn structure based on InAs/GaSb type-II strained layer superlattices," Appl. Phys. Lett. 91, 043514 (2007). https://doi.org/10.1063/1.2760153
  5. D. Z.-Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. D. Gunapala, "A high-performance long wavelength superlattice complementary barrier infrared detector," Appl. Phys. Lett. 95, 023508 (2009). https://doi.org/10.1063/1.3177333
  6. O. Salihoglu, A. Muti, K. Kutluer, T. Tansel, R. Turan, Y. Ergun, and A. Aydinli, "'N'structure for type-II superlattice photodetectors," Appl. Phys. Lett. 101, 073505 (2012). https://doi.org/10.1063/1.4745841
  7. D. Wu, J. Li, A. Dehzangi, and M. Razeghi, "High performance InAs/InAsSb type-II superlattice mid-wavelength infrared photodetectors with double barrier," Infrared Phys. Technol. 109, 103439 (2020). https://doi.org/10.1016/j.infrared.2020.103439
  8. J. Dixon, "Radiation thermometry," J. Phys. E: Sci. Instrum. 21, 425-436 (1988). https://doi.org/10.1088/0022-3735/21/5/001
  9. O. Salihoglu, Abdullah Muti, and Atilla Aydinli, "A comparative passivation study for InAs/GaSb pin superlattice photodetectors," IEEE J. Quantum Electron. 49, 661-666 (2013). https://doi.org/10.1109/JQE.2013.2267553
  10. M. Herrera, M. Chi, M. Bonds, N. D. Browning, J. N. Woolman, R. E. Kvaas, S. F. Harris, D. R. Rhiger, and C. J. Hill, "Atomic scale analysis of the effect of the SiO2 passivation treatment on InAs/GaSb superlattice mesa sidewall," Appl. Phys. Lett. 93, 093106 (2008). https://doi.org/10.1063/1.2977589
  11. H. S. Kim, "Passivation study of InAs/GaSb type-II strained layer superlattice in mid-wave Infrared photodetector," J. Korean Phys. Soc. 77, 714-718 (2020). https://doi.org/10.3938/jkps.77.714
  12. P. Martyniuk, J. Wrobel, E. Plis, P. Madejczyk, W. Gawron, and A. Kowalewski, "Modeling of midwavelength infrared InAs/GaSb type II superlattice detectors," Opt. Eng. 52, 061307 (2013). https://doi.org/10.1117/1.OE.52.6.061307
  13. E. L. Dereniak and G. D. Boreman, Infrared Detectors and Systems (John Wiley & Sons, Hoboken, NJ. USA, 1996), Chapter 6.
  14. J. D. Vincent, S. Hodges, J. Vampola, M. Stegall and G. Pierce, Fundamentals of Infrared and Visible Detector Operation and Testing, 2nd ed., (John Wiley & Sons, Hoboken, NJ, USA. 2015), Chapter 1.