• Title/Summary/Keyword: Photodetector

Search Result 242, Processing Time 0.019 seconds

Importance of Zinc Oxide Nanoparticle Concentration on the Electrical Properties of Lead Sulfide Quantum Dots-Based Shortwave Infrared Photodetectors (황화납 양자점 기반 단파장 적외선 수광소자의 전기적 특성 향상을 위한 산화아연 나노입자 농도의 중요성)

  • Seo, Kyeong-Ho;Bae, Jin-Hyuk
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.125-130
    • /
    • 2022
  • We describe the importance of zinc oxide nanoparticle (ZnO NP) concentration in the enhancement of electrical properties in a lead sulfide quantum dot (PbS QD)-based shortwave infrared (SWIR) photodetector. ZnO NPs were synthesized using the sol-gel method. The concentration of the ZnO NPs was controlled as 20, 30 and 40 mg/mL in this study. Note that the ZnO NPs layer is commonly used as an electron transport layer in PbS QDs SWIR photodetectors. The photo-to-dark ratio, which is an important parameter of a photodetector, was intensively examined to evaluate the electrical performance. The 20 mg/mL condition of ZnO NPs exhibited the highest photo-to-dark ratio value of 5 at -1 V, compared with 1.8 and 0.4 for 30 mg/mL and 40 mg/mL, respectively. This resulted because the electron mobility decreased when the concentration of ZnO NPs was higher than the optimized value. Based on our results, the concentration of ZnO NPs was observed to play an important role in the electrical performance of the PbS QDs SWIR photodetector.

AZO-Embedded Transparent Cu Oxide Photodetector (AZO 기반의 투명 Cu Oxide 광검출기)

  • Lee, Gyeong-Nam;Park, Wang-Hee;Um, Sung-Yun;Jang, Jun-min;Lim, Sol-Ma-Ru;Yun, Hyun-Chan;Hyeon, Seong-Woo;Kim, Joondong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.6
    • /
    • pp.339-344
    • /
    • 2017
  • An all-transparent photodetector was fabricated by structuring $Cu_2O$/ZnO/AZO/ITO on a glass substrate. The visible-range transmittance was as high as 80%, which ensures clear vision forhuman eyes. High-transparency metal conductive oxides (p-type $Cu_2O$ and n-type ZnO) were appliedto form the transparent p/n junction. The functional AZO layer was adopted to improve the transparent photodetector performance between the ZnO and ITO, improving the photoresponses because of its electrical conductivity. To clarify the AZO functionality, a comparator device was prepared without the AZO layer in the formation of $Cu_2O$/ZnO/ITO/Glass. The $Cu_2O$/ZnO/AZO/ITO device provided a rectifying ratio of 113.46, significantly better than the 9.44 of the $Cu_2O$/ZnO/ITO device. In addition, the $Cu_2O$/ZnO/AZO/ITO device's photoresponses at short wavelengths were better than those of the comparator. The functioning AZO layer provides ahigh-performing transparent Cu oxide photodetector and may suggest a route for the design of efficient photoelectric devices.

MoOx-Windowed High-Performing Transparent Photodetector (MoOx 기반의 고성능 투명 광검출기)

  • Park, Wang-Hee;Lee, Gyeongnam;Kim, Joondong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.6
    • /
    • pp.387-392
    • /
    • 2017
  • A high-performing all-transparent photodetector was created by configuring a $MoO_x$/NiO/ZnO/ITO structure on a glass substrate. The ITO bottom layer was applied as a back contact. To achieve the transparent p/n junction, p-type NiO was coated on the n-type ZnO layer. Reactive sputtering was used to spontaneously form the ZnO or NiO layer. In order to improve the transparent photodetector performance, the functional $MoO_x$ window layer was used. Optically, the $MoO_x$ window provided a refractive index layer (n=1.39) lower than that of NiO (n=2), increasing the absorption of the incident light wavelengths (${\lambda}s$). Moreover, the $MoO_x$ window can provide a lower sheet resistance to improve the carrier collection for the photoresponses. The $MoO_x$/NiO/ZnO/ITO device showed significantly better photoresponses of 877.05 (at ${\lambda}$=460nm), 87.30 (${\lambda}$=520 nm), and 30.38 (${\lambda}$=620 nm), compared to 197.28 (${\lambda}$=460 nm), 51.74 (${\lambda}$=520 nm) and 25.30 (${\lambda}$=620 nm) of the NiO/ZnO/ITO device. We demonstrated the high-performing transparent photodetector by using the multifunctional $MoO_x$ window layer.

Automatic Angle Alignment of a Wireless Optical Detector (수광각을 자동정렬하는 무선광검출기)

  • 이성호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.5
    • /
    • pp.466-471
    • /
    • 2003
  • In this paper, we introduce a new photodetector configuration that automatically aligns its receiving angle to the incident signal light. Around the central photodiode that receives the optical signal, 4 photodiodes on ${\Phi}$-axis and 2 photodiodes on $\theta$-axis are installed in order to drive 2 step motors in f and $\theta$ direction. The photodetector completes angle-alignment within Isec to the signal light from an arbitrary direction.

MoOx/Si Heterojunction for High-Performing Photodetector (MoOx 기반 실리콘 이종접합 고성능 광검출기)

  • Park, Wang-Hee;Kim, Joondong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.11
    • /
    • pp.720-724
    • /
    • 2016
  • Transparent n-type metal-oxide semiconductor of $MoO_x$ was applied on a p-type Si substrate for high-performing heterojunction photodetector. The formation of $MoO_x$ on Si spontaneously established a rectifying current flow with a high rectification ratio of 1,252.3%. Under light illumination condition, n-type $MoO_x$/p-type Si heterojunction device provided significantly fast responses (rise time : 61.28 ms, fall time : 66.26 ms). This transparent metal-oxide layer ($MoO_x$) would provide a functional route for various photoelectric devices, including photodetectors and solar cells.

Analytical Model of Double Gate MOSFET for High Sensitivity Low Power Photosensor

  • Gautam, Rajni;Saxena, Manoj;Gupta, R.S.;Gupta, Mridula
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.5
    • /
    • pp.500-510
    • /
    • 2013
  • In this paper, a high-sensitivity low power photodetector using double gate (DG) MOSFET is proposed for the first time using change in subthreshold current under illumination as the sensitivity parameter. An analytical model for optically controlled double gate (DG) MOSFET under illumination is developed to demonstrate that it can be used as high sensitivity photodetector and simulation results are used to validate the analytical results. Sensitivity of the device is compared with conventional bulk MOSFET and results show that DG MOSFET has higher sensitivity over bulk MOSFET due to much lower dark current obtained in DG MOSFET because of its effective gate control. Impact of the silicon film thickness and gate stack engineering is also studied on sensitivity.

Ultraviolet and visible light detection characteristics of amorphous indium gallium zinc oxide thin film transistor for photodetector applications

  • Chang, Seong-Pil;Ju, Byeong-Kwon
    • International journal of advanced smart convergence
    • /
    • v.1 no.1
    • /
    • pp.61-64
    • /
    • 2012
  • The ultraviolet and visible light responsive properties of the amorphous indium gallium zinc oxide thin film transistor have been investigated. Amorphous indium gallium zinc oxide (a-IGZO) thin film transistor operate in the enhancement mode with saturation mobility of $6.99cm^2/Vs$, threshold voltage of 13.5 V, subthreshold slope of 1.58 V/dec and an on/off current ratio of $2.45{\times}10^8$. The transistor was subsequently characterized in respect of visible light and UV illuminations in order to investigate its potential for possible use as a detector. The performance of the transistor is indicates a high-photosensitivity in the off-state with a ratio of photocurrent to dark current of $5.74{\times}10^2$. The obtained results reveal that the amorphous indium gallium zinc oxide thin film transistor can be used to fabricate UV photodetector operating in the 366 nm.

Simple Autocorrelation Measurement by Using a GaP Photoconductive Detector

  • Shin, Seong-Il;Lim, Yong-Sik
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.435-440
    • /
    • 2016
  • We developed a simple and real-time readout autocorrelator for several tens and sub-10fs pulses, based on the two photon absorption phenomena of a commercial GaP photodetector including a transimpedance amplifier. With a suitable gain adjustment, we demonstrated that the interferometric autocorrelation for sub-nJ pulses delivered as a high output voltage as to resolve all fringes in an autocorrelation trace with features of low noise and a low offset voltage. By fitting the measured quadratic power dependence of output voltages, we obtained the quantum efficiency of TPA for the GaP detector comparable with those of a GaAsP diode and an SHG with a thin BBO crystal. The autocorrelator of a TPA based GaP photodetector is highly suitable for sensitively measuring a few cycle pulses with a broad spectral distribution from 600 nm to 1100 nm.

Surface-Mountable 10 Gbps Photoreceiver Module Using Inductive Compensation Method

  • Kim, Sung-Il;Hong, Seon-Eui;Lim, Jong-Won;Moon, Jong-Tae
    • ETRI Journal
    • /
    • v.26 no.1
    • /
    • pp.57-60
    • /
    • 2004
  • We propose an inductive compensation method for a surface-mountable 10 Gbps photoreceiver module. Since many typical 10 Gbps photoreceiver modules consist of a photodetector and low-noise pre-amplifier, the impedance mismatch between the photodetector and pre-amplifier, as well as package parasitics, may reduce the frequency bandwidth. In this paper, we inserted an inductive component between the photodetector and pre-amplifier in order to create frequency bandwidth expansion. From the measurement results, we have found that the proposed technique can increase the -3 dB bandwidth about 4.2 GHz wider compared with an uncompensated module. And, from a bit-error rate (BER) test, we observed -15.7 dB sensitivity at $10^{-12}$ BER. This inductive compensation can be implemented easily and is compatible with common manufacturing processes of photoreceiver modules.

  • PDF

A highly integrable p-GaN MSM photodetector with GaN n-channel MISFET for UV image sensor system

  • Lee, Heon-Bok;Hahm, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.346-349
    • /
    • 2008
  • A metal-semiconductor-metal (MSM) ultraviolet (UV) photodetector (PD) is proposed as an effective UV sensing device for integration with a GaN n-channel MISFET on auto-doped p-type GaN grown on a silicon substrate. Due to the high hole barrier of the metal-p-GaN contact, the dark current density of the fabricated MSM PD was less than $3\;nA/cm^2$ at a bias of up to 5 V. Meanwhile, the UV/visible rejection ratio was 400 and the cutoff wavelength of the spectral responsivity was 365 nm. However, the UV/visible ratio was limited by the sub-bandgap response, which was attributed to defectrelated deep traps in the p-GaN layer of the MSM PD. In conclusion, an MSM PD has a high process compatibility with the n-channel GaN Schottky barrier MISFET fabrication process and epitaxy on a silicon substrate.