DOI QR코드

DOI QR Code

황화납 양자점 기반 단파장 적외선 수광소자의 전기적 특성 향상을 위한 산화아연 나노입자 농도의 중요성

Importance of Zinc Oxide Nanoparticle Concentration on the Electrical Properties of Lead Sulfide Quantum Dots-Based Shortwave Infrared Photodetectors

  • 서경호 (경북대학교 전자전기공학부) ;
  • 배진혁 (경북대학교 전자전기공학부)
  • Seo, Kyeong-Ho (School of Electronic and Electrical Engineering, Kyungpook National Unversity) ;
  • Bae, Jin-Hyuk (School of Electronic and Electrical Engineering, Kyungpook National Unversity)
  • 투고 : 2022.03.14
  • 심사 : 2022.03.30
  • 발행 : 2022.03.31

초록

We describe the importance of zinc oxide nanoparticle (ZnO NP) concentration in the enhancement of electrical properties in a lead sulfide quantum dot (PbS QD)-based shortwave infrared (SWIR) photodetector. ZnO NPs were synthesized using the sol-gel method. The concentration of the ZnO NPs was controlled as 20, 30 and 40 mg/mL in this study. Note that the ZnO NPs layer is commonly used as an electron transport layer in PbS QDs SWIR photodetectors. The photo-to-dark ratio, which is an important parameter of a photodetector, was intensively examined to evaluate the electrical performance. The 20 mg/mL condition of ZnO NPs exhibited the highest photo-to-dark ratio value of 5 at -1 V, compared with 1.8 and 0.4 for 30 mg/mL and 40 mg/mL, respectively. This resulted because the electron mobility decreased when the concentration of ZnO NPs was higher than the optimized value. Based on our results, the concentration of ZnO NPs was observed to play an important role in the electrical performance of the PbS QDs SWIR photodetector.

키워드

과제정보

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (2021R1A2C1011429).

참고문헌

  1. X. Zhao, L. Song, R. Zhao, and M. C. Tan, "High-Performance and Flexible Shortwave Infrared Photodetectors Using Composites of Rare Earth-Doped Nanoparticles", ACS Appl. Mater. Interfaces, Vol. 11, No. 2, pp. 2344-2351, 2019. https://doi.org/10.1021/acsami.8b16978
  2. A. S. Upadhyaya and P. K. Bandyopadhyay, "Broad Band Antireflection Coating on Zinc Sulphide Window for Short-wave infrared cum Night Vision System", J. Phys.: Conf. Ser., Vol. 390, p. 012018, 2012.
  3. N. Zhang, Y. Hong, Q. Qin, and L. Liu, "VSDI: a visible and shortwave infrared drought index for monitoring soil and vegetation moisture based on optical remote sensing", Int. J. Remote Sens., Vol. 34, No. 13, pp. 4585-4609, 2013. https://doi.org/10.1080/01431161.2013.779046
  4. M. A. Iqbal, A. Liaqat, S. Hussain, X. Wang, M. Tahir, Z. Urooj, and L. Xie, "Ultralow-Transition-Energy Organic Complex on Graphene for High-Performance Shortwave Infrared Photodetection", Adv. Mater., Vol. 32, No. 37, p. 2002628, 2020. https://doi.org/10.1002/adma.202002628
  5. G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, "Sensitive solution-processed visible-wavelength photodetectors", Nature Photon., Vol. 1, No. 9, pp. 531-534, 2007. https://doi.org/10.1038/nphoton.2007.147
  6. R.-M. Lin, S.-F. Tang, S.-C. Lee, and C. H. Kuan, "Improvement of current leakage in the InAs photodetector by molecular beam epitaxy", J. Cryst. Growth, Vol. 227-228, pp. 167-171, 2001. https://doi.org/10.1016/S0022-0248(01)00657-1
  7. Y. Wan, Z. Zhang, R. Chao, J. Norman, D. Jung, C. Shang, Q. Li, Mj. Kennedy, D. Liang, C. Zhang, J.-W. Shi, A. C. Gossard, K. M. Lau, and J. E. Bowers, "Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrate", Opt. Express, Vol. 25, No. 22, pp. 27715-27723, 2017. https://doi.org/10.1364/OE.25.027715
  8. S. Ghosh, K.-C. Lin, C.-H. Tsai, H. Kumar, Q. Chen, L. Zhang, B. Son, C. S. Tan, M. Kim, B. Mukhopadhyay, and G. -E. Chang, "Metal-Semiconductor-Metal GeSn Photodetectors on Silicon for Short-Wave Infrared Applications", Micromachines, Vol. 11, No. 9, p. 795, 2020. https://doi.org/10.3390/mi11090795
  9. K.-H. Seo, X. Zhang, S. Baang, J. Park, and J.-H. Bae, "Influence of Thickness of Poly(3-hexylthiophene-2,5-diyl) Hole Transport Layer on Electrical Characteristics of Lead Sulfide Quantum Dot-Based Shortwave Infrared Photodiodes", J. Korean Phys. Soc., Vol. 79, No. 5, pp. 512-520, 2021. https://doi.org/10.1007/s40042-021-00265-1
  10. H. Zhao, M. Chaker, N. Wu, and D. Ma, "Toward controlled synthesis and better understanding of highly luminescent PbS/CdS core/shell quantum dots", J. Mater. Chem., Vol. 21, No. 24, p. 8898, 2011. https://doi.org/10.1039/c1jm11205h
  11. I. Moreels, Y. Justo, B. D. Geyter, K. Haustraete, J. C. Martins, and Z. Hens, "Size-Tunable, Bright and Stable PbS Quantum Dots: A Surface Chemistry Study", ACS Nano, Vol. 5, No. 3, pp. 2004-2012, 2011. https://doi.org/10.1021/nn103050w
  12. R. Saran and R. J. Curry, "Lead sulphide nanocrystal photodetector technologies", Nature Photon., Vol. 10, No. 2, pp. 81-92, 2016. https://doi.org/10.1038/nphoton.2015.280
  13. K.-H. Seo, J. Jang, I. Kang, and J.-H. Bae, "Improving of Sensitivity of PbS Quantum Dot Based SWIR Photodetector Using P3HT", Materials, Vol. 14, No. 6, p. 1488, 2021. https://doi.org/10.3390/ma14061488
  14. Z. Sun, J. Li, and F. Yan, "Highly sensitive organic near-infrared phototransistors based on poly(3-hexylthiophene) and PbS quantum dots", J. Mater. Chem., Vol. 22, No. 40, p. 21673, 2012. https://doi.org/10.1039/c2jm34773c
  15. L.-H. Lai, M. J. Speirs, F.-K. Chang, L. Piveteau, M. V. Kovalenko, J.-S. Chen, J.-J. Wu, and M. A. Loi, "Increasing photon absorption and stability of PbS quantum dot solar cells using a ZnO interlayer", Appl. Phys. Lett., Vol. 107, No. 18, p. 183901, 2015. https://doi.org/10.1063/1.4934946
  16. J. Tang, X. Wang, L. Brzozowski, D. A. R. Barkhouse, R. Debnath, L. Levina, and E. H. Sargent, "Schottky Quantum Dot Solar Cells Stable in Air under Solar Illumination", Adv. Mater., Vol. 22, No. 12, pp. 1398-1402, 2010. https://doi.org/10.1002/adma.200903240
  17. J. Kwon, S. Kim, J. Lee, C. Park, O. Kim, B. Xu, J. Bae, and S. Kang, "Uncooled Short-Wave Infrared Sensor Based on PbS Quantum Dots Using ZnO NPs", Nanomaterials, Vol. 9, No. 7, p. 926, 2019. https://doi.org/10.3390/nano9070926
  18. A. Abdelkrim, S. Rahmane, O. Abdelouahab, N. Abdelmalek, and G. Brahim, "Effect of solution concentration on the structural, optical and electrical properties of SnO2 thin films prepared by spray pyrolysis", Optik, Vol. 127, No. 5, pp. 2653-2658, 2016. https://doi.org/10.1016/j.ijleo.2015.11.232
  19. S.-W. Kim, N.-R. Kim, J.-B. Kwon, J. K. Kim, D. G. Jung, S. H. Kong, and D. Jung, "Sensitivity enhancement of H2 gas sensor using PbS quantum dots", J. Sens. Sci. Technol.,Vol. 29, No. 6, pp. 388-393, 2020. https://doi.org/10.46670/JSST.2020.29.6.388
  20. W. Xu, H. Peng, T. Zhu, C. Yi, L. Liu, and X. Gong, "A solution-processed near-infrared polymer:PbS quantum dot photodetectors", RSC Adv., Vol. 7, No. 55, pp. 34633-34637, 2017. https://doi.org/10.1039/C7RA01199G
  21. D. Pal, J. Singhal, A. Mathur, A. Singh, S. Dutta, S. Zollner, and S. Chattopadhyay, "Effect of substrates and thickness on optical properties in atomic layer deposition grown ZnO thin films", Appl. Surf. Sci., Vol. 421, pp. 341-348, 2017. https://doi.org/10.1016/j.apsusc.2016.10.130
  22. S.A. Mcdonald, G. Konstantatos, S. Zhang, P. W. CYR, E.J. D. Klem, L. Levina, and E. H. Sargent, "Solution-processed PbS quantum dot infrared photodetectors and photovoltaics", Nat. Mater., Vol. 4, No. 2, pp. 138-142, 2005. https://doi.org/10.1038/nmat1299
  23. S. Wang, H. Li, R. Lu, G. Zheng, and X. Tang, "Metal nanoparticle decorated n-type Bi2Te3-based materials with enhanced thermoelectric performances", Vol. 24, No. 28, p. 285702, 2013. https://doi.org/10.1088/0957-4484/24/28/285702