Browse > Article
http://dx.doi.org/10.4313/JKEM.2017.30.6.387

MoOx-Windowed High-Performing Transparent Photodetector  

Park, Wang-Hee (Photoelectric and Energy Device Application Lab, Multidisciplinary Core Institute for Future Energies, Incheon National University)
Lee, Gyeongnam (Photoelectric and Energy Device Application Lab, Multidisciplinary Core Institute for Future Energies, Incheon National University)
Kim, Joondong (Photoelectric and Energy Device Application Lab, Multidisciplinary Core Institute for Future Energies, Incheon National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.30, no.6, 2017 , pp. 387-392 More about this Journal
Abstract
A high-performing all-transparent photodetector was created by configuring a $MoO_x$/NiO/ZnO/ITO structure on a glass substrate. The ITO bottom layer was applied as a back contact. To achieve the transparent p/n junction, p-type NiO was coated on the n-type ZnO layer. Reactive sputtering was used to spontaneously form the ZnO or NiO layer. In order to improve the transparent photodetector performance, the functional $MoO_x$ window layer was used. Optically, the $MoO_x$ window provided a refractive index layer (n=1.39) lower than that of NiO (n=2), increasing the absorption of the incident light wavelengths (${\lambda}s$). Moreover, the $MoO_x$ window can provide a lower sheet resistance to improve the carrier collection for the photoresponses. The $MoO_x$/NiO/ZnO/ITO device showed significantly better photoresponses of 877.05 (at ${\lambda}$=460nm), 87.30 (${\lambda}$=520 nm), and 30.38 (${\lambda}$=620 nm), compared to 197.28 (${\lambda}$=460 nm), 51.74 (${\lambda}$=520 nm) and 25.30 (${\lambda}$=620 nm) of the NiO/ZnO/ITO device. We demonstrated the high-performing transparent photodetector by using the multifunctional $MoO_x$ window layer.
Keywords
$MoO_x$; Photodetector; Phororesponse; ZnO; NiO; ITO;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 N. Liu, H. Tian, G. Schwartz, T. Ren, and Z. Bao, Nano Lett., 14, 3702 (2014). [DOI: http://dx.doi.org/10.1021/nl500443j]   DOI
2 C. Zhao, Z. Liang, M. Su, P. Liu, W. Mai, and W. Xie, ACS Appl. Mater. Interfaces, 7, 25981 (2015). [DOI: http://dx.doi.org/10.1021/acsami.5b09492]   DOI
3 W. H. Park and J. D. Kim, Korean Inst. Electr. Electron. Mater. Eng., 29, 720 (2016). [DOI: https://doi.org/10.4313/JKEM.2016.29.11.720]
4 W. Tian, T. Zhai, C. Zhang, S. Li, X. Wang, F. Liu, D. Liu, X. Cai, K. Tsukagoshi, D. Golberg, and Y. Bando, Adv. Mater., 24, 4625 (2013). [DOI: http://dx.doi.org/10.1002/adma.201301828]
5 M. Bivour, J. Temmler, H. Steinkemper, and M. Hermle, Sol. Energy Mat. Sol. Cells, 142, 34 (2015). [DOI: http://dx.doi.org/10.1016/j.solmat.2015.05.031]   DOI
6 J. Bullock, A. Cuevas, T. Allen, C. Battaglia, J. Bullock, A. Cuevas, T. Allen, and C. Battaglia, Appl. Phys. Lett., 105, 232109 (2016). [DOI: http://dx.doi.org/10.1063/1.4903467]
7 J. Geissbuhler, J. Werner, S. M. De Nicolas, L. Barraud, A. Hessler-wyser, S. Nicolay, A. Tomasi, B. Niesen, S. De Wolf, C. Ballif, B. Niesen, S. De Wolf, and C. Ballif, Appl. Phys. Lett., 107, 081601 (2016). [DOI: http://dx.doi.org/10.1063/1.4928747]
8 C. Battaglia, X. Yin, M. Zheng, I. D. Sharp, T. Chen, S. Mcdonnell, A. Azcatl, C. Carraro, B. Ma, R. Maboudian, R. M. Wallace, and A. Javey, Nano Lett., 14, 967 (2014). [DOI: http://dx.doi.org/10.1021/nl404389u]   DOI
9 W. Du, R. Takabe, M. Baba, H. Takeuchi, K. O. Hara, K. Toko, and N. Usami, Appl. Phys. Lett., 106, 122104 (2016). [DOI: http://dx.doi.org/10.1063/1.4916348]
10 N. Oka, H. Watanabe, Y. Sato, H. Yamaguchi, N. Ito, H. Tsuji, and Y. Shigesato, J. Vac. Sci. Technol. A, 28, 2 (2010). [DOI: http://dx.doi.org/10.1116/1.3328822]
11 H. Ohta, M. Hirano, K. Nakahara, H. Maruta, T. Tanabe, and M. Kamiya, Appl. Phys. Lett., 83, 1029 (2016). [DOI: http://dx.doi.org/10.1063/1.1598624]
12 R.K.A. Gupta, K. Ghosh, and P. K. Kahol, Phys. E, 41, 617 (2009). [DOI: http://dx.doi.org/10.1016/j.physe.2008.10.013]   DOI
13 H. Long, G. Fang, H. Huang, X. Mo, W. Xia, B. Dong, X. Meng, H. Long, G. Fang, and X. Mo, Appl. Phys. Lett., 95, 013509 (2013). [DOI: http://dx.doi.org/10.1063/1.3176440]
14 W. H. Park, D. K. Ban, H. S. Kim, M. Patel, J. H. Yoo, and J. Kim, Korean Inst. Electr. Electron. Mater, Eng., 29, 445 (2016). [DOI: http://dx.doi.org/10.4313/JKEM.2016.29.7.445]
15 J. Bullock, D. Yan, A. Cuevas, Y. Wan, and C. Samundsett, Energy Procedia, 77, 446 (2015). [DOI: http://dx.doi.org/10.1016/j.egypro.2015.07.063]   DOI
16 M. Patel, H. S. Kim, H. H. Park, and J. Kim, Sci. Rep., 6 (2016). [DOI: http://dx.doi.org/10.1038/srep25461]
17 M. Patel, H. S. Kim, and J. Kim, Adv. Electron. Mater., 1 (2015). [DOI: http://dx.doi.org/10.1002/aelm.201500232]