Browse > Article
http://dx.doi.org/10.3807/JOSK.2016.20.3.435

Simple Autocorrelation Measurement by Using a GaP Photoconductive Detector  

Shin, Seong-Il (Department of Nano Science & Mechanical Engineering and Nano Research Center, Konkuk University)
Lim, Yong-Sik (Department of Nano Science & Mechanical Engineering and Nano Research Center, Konkuk University)
Publication Information
Journal of the Optical Society of Korea / v.20, no.3, 2016 , pp. 435-440 More about this Journal
Abstract
We developed a simple and real-time readout autocorrelator for several tens and sub-10fs pulses, based on the two photon absorption phenomena of a commercial GaP photodetector including a transimpedance amplifier. With a suitable gain adjustment, we demonstrated that the interferometric autocorrelation for sub-nJ pulses delivered as a high output voltage as to resolve all fringes in an autocorrelation trace with features of low noise and a low offset voltage. By fitting the measured quadratic power dependence of output voltages, we obtained the quantum efficiency of TPA for the GaP detector comparable with those of a GaAsP diode and an SHG with a thin BBO crystal. The autocorrelator of a TPA based GaP photodetector is highly suitable for sensitively measuring a few cycle pulses with a broad spectral distribution from 600 nm to 1100 nm.
Keywords
Realtime autocorrelator; Collinear interferometric autocorrelation; GaP photodetector; Two photon absorption;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. C. M. Diels, J. J. Fontaine, I. C. McMichael, and F. Simoni, “Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy,” Appl. Opt. 24, 1270-1282 (1985).   DOI
2 Y. Takagi, T. Kobayashi, and K. Yoshihara, “Multiple- and single-shot autocorrelator based on two-photon conductivity in semiconductors,” Opt. Lett. 17, 658-660 (1992).   DOI
3 L. P. Barry, P. G. Bollond, J. M. Dudley, J. D. Harvey, and R. Leonhardt, “Autocorrelation of ultrashort pulses at 1.5 mm based on nonlinear response of silicon photodiodes,” Electron. Lett. 32, 1922-1932 (1996).   DOI
4 J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett. 22, 1344-1346 (1997).   DOI
5 A. C. Millard, D. N. Fittinghoff, J. A. Squier, M. Muller, and A. L. Gaeta, “Using GaAsP photodiodes to characterize ultrashort pulses under high numerical aperture focusing in microscopy,” J. Microsc. 193, 179-181 (1999).   DOI
6 W. Schade, J. Preusser, D. L. Osborn, Y. Y. Lee, J. deGouw, and S. R. Leone, “Spatially resolved femtosecond time correlation measurements on a GaAsP photodiode,” Opt. Commun. 162, 200-204 (1999).   DOI
7 P. Langlois and E. Ippen, “Measurement of pulse asymmetry by three-photon-absorption autocorrelation in a GaAsP photodiode,” Opt. Lett. 24, 1868-1870 (1999).   DOI
8 D. T. Reid, C. McGowan, M. Ebrahimzadeh, and W. Sibbet, “Characterization and modeling of a noncollinearly phasematched femtosecond optical parametric oscillator based on KTA and operating to beyond 4 µm,” IEEE J. Quantum Electron. 33, 1-9 (1997).   DOI
9 T. Feurer, A. Glass, and R. Sauerbrey, “Two-photon photoconductivity in SiC photodiodes and its application to autocorrelation measurements of femtosecond optical pulses,” Appl. Phys. B 65, 295-297 (1997).
10 Y. C. Noh, J. H. Lee, J. S. Chang, Y. S. Lim, and J. D. Park, “Visible wavelength autocorrelation based on the two-photon absorption in a SiC photodiode,” J. Opt. Soc. Korea 3, 27-31 (1999).   DOI
11 T. Sun, B. K. K. Fung, I. K. Sou, G. K. L. Wong, K. S. Wong, and G. Lanzani, “Two-photon absorption autocorrelation of visible to ultraviolet femtosecond laser pulses using ZnS-based photodetectors,” IEEE Photon. Technol. Lett. 14, 86-88 (2002).   DOI
12 P. Loza-Alvarez, W. Sibbett, and D. T. Reid, “Autocorrelation of femtosecond pulses from 415-630 nm using GaN laser diode,” Electron. Lett. 36, 631-633 (2000).   DOI
13 A. M. Streltsov, K. D. Moll, A. L. Gaeta, P. Kung, D. Walker, and M. Razeghi, “Pulse autocorrelation measurements based on two- and three-photon conductivity in a GaN photodiode,” Appl. Phys. Lett. 75, 3778-3780 (1999).   DOI
14 D. T. Reid, M. Padgett, C. McGowan, W. E. Sleat, and W. Sibbett, “Light emitting diodes as measurement devices for femtosecond laser pulses,” Opt. Lett. 22, 233-235 (1997).   DOI
15 D. Duchesne, L. Razzari, L. Halloran, R. Morandotti, A. J. Spring Thorpe, D. N. Christodoulides, and D. J. Moss, “Two-photon photodetector in a multiquantum well GaAs laser structure at 1.55 µm,” Opt. Express 17, 5298-5310 (2009).   DOI
16 Y. Takagi, “Simple autocorrelator for ultraviolet pulse-width measurements based on the nonlinear photoelectric effect,” Appl. Opt. 33, 6328-6332 (1994).   DOI
17 D. T. Reid, W. Sibbett, J. M. Dudley, L. P. Barry, B. Thomsen, and J. D. Harvey, “Commercial semiconductor devices for two photon absorption autocorrelation of ultrashort light pulses,” Appl. Opt. 37, 8142-8144 (1998).   DOI
18 H. Folliot, M. Lynch, A. L. Bradley, L. A. Dunbar, J. Hegarty, J. F. Donegan, L. P. Barry, J. S. Roberts, and G. Hill, “Two-photon absorption photocurrent enhancement in bulk AlGaAs semiconductor microcavities,” Appl. Phys. Lett. 80, 1328-1330 (2002).   DOI
19 T. Krug, M. Lynch, A. L. Bradley, J. F. Donegan, L. P. Barry, H. Folliot, J. S. Roberts, and G. Hill, “High-sensitivity two-photon absorption micro-cavity autocorrelator,” IEEE Photon. Technol. Lett. 16, 1543-1545 (2004).   DOI
20 D. J. Kane and R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron. 29, 571-579 (1993).   DOI
21 C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23, 792-794 (1998).   DOI
22 M. Dantus, V. V. Lozovoy, and I. Pastirk, “Measurement and repair. The femtosecond Wheatstone bridge,” OE Magazine 9, 15-17 (2003).
23 E. Z. Chong, T. F. Watson, and F. Festy, “Autocorrelation measurement of femtosecond laser pulses based on two-photon absorption in GaP photodiode,” Appl. Phys. Lett. 105, 062111 (2014).   DOI
24 Thorlabs User Guide Manual, PAD25K(-EC) GaP Switchable Gain Detector.
25 A. Baltuška, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipőcs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys. B 65, 175-188 (1997).   DOI