Browse > Article
http://dx.doi.org/10.7236/JASC2012.1.1.12

Ultraviolet and visible light detection characteristics of amorphous indium gallium zinc oxide thin film transistor for photodetector applications  

Chang, Seong-Pil (Display and Nanosystem Laboratory, Department of Electrical Engineering, College of Engineering, Korea University)
Ju, Byeong-Kwon (Display and Nanosystem Laboratory, Department of Electrical Engineering, College of Engineering, Korea University)
Publication Information
International journal of advanced smart convergence / v.1, no.1, 2012 , pp. 61-64 More about this Journal
Abstract
The ultraviolet and visible light responsive properties of the amorphous indium gallium zinc oxide thin film transistor have been investigated. Amorphous indium gallium zinc oxide (a-IGZO) thin film transistor operate in the enhancement mode with saturation mobility of $6.99cm^2/Vs$, threshold voltage of 13.5 V, subthreshold slope of 1.58 V/dec and an on/off current ratio of $2.45{\times}10^8$. The transistor was subsequently characterized in respect of visible light and UV illuminations in order to investigate its potential for possible use as a detector. The performance of the transistor is indicates a high-photosensitivity in the off-state with a ratio of photocurrent to dark current of $5.74{\times}10^2$. The obtained results reveal that the amorphous indium gallium zinc oxide thin film transistor can be used to fabricate UV photodetector operating in the 366 nm.
Keywords
a-IGZO TFT; Photoresponse; Photodetector; Oxide-semiconductor;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature (London) 432, 488 (2004).   DOI   ScienceOn
2 J. -W. Kim, H. -S. Kang, and S. Y. Lee, J. Elec. Eng. & Tech. 1, 98 (2006).   DOI
3 R. L. Hoffman, B. J. Norris, and J. F. Wager, Appl. Phys. Lett. 82, 733 (2003).   DOI   ScienceOn
4 J. -H. Kwon, J. -H. Seo, S. -I. Shin, and B. -K. Ju, J. Phys. D: Appl. Phys. 42, 065105 (2009).   DOI
5 H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, Appl. Phys. Lett. 86, 013503 (2005).   DOI   ScienceOn
6 Dhananjay, and C, W. Chu, Appl. Phys. Lett. 91, 132111 (2007).   DOI   ScienceOn
7 S. Chang, Y. -W. Song, S. Lee, S. Y. Lee, and B. -K. Ju, Appl. Phys. Lett. 92, 192104 (2008).   DOI   ScienceOn
8 K. W. Lee, K. Y. Heo, and H. J. Kim, Appl. Phys. Lett. 94, 102112 (2009).   DOI
9 J. -S. Park, J. K. Jeong, Y. -G. Mo, H. D. Kim, and C. -J. Kim, Appl. Phys. Lett. 93, 033513 (2008).   DOI
10 P. Servati, A. Nathan, and G. A. J. Amaratunga, Phys. Rev. B 74, 245210 (2006).   DOI
11 A. Tsusima, H. Koezuka, T. Ando, Appl. Phys. Lett. 49 ,1210 (1986).   DOI
12 T.-C. Fund, C.-S. Chuang, K. Nomura, H.-P. D. Shieh, H. Hosono, J. Kanicki, Journal of Information Display 9, 21 (2008).   DOI
13 G. Horowitz, Adv. Funct. Mater. 13, 53 (2003).   DOI
14 R.N. Christopher, C.D. Frisbie, D.A. da Silva Filho, J.L. Bredas, C.E. Paul, R.M. Kent Chem. Mater. 16 4436 (2004).   DOI   ScienceOn
15 J.D. Gallezot, S. Martin, and J. Kanicki, in Proc. Int. Display Research Conf. (IDRC), pp. 407-410 (2001).