• Title/Summary/Keyword: Photochemical etching

Search Result 14, Processing Time 0.031 seconds

Modeling of Polymer Ablation with Excimer Lasers (폴리머 미세가공을 위한 레이저 어블레이션 모델링)

  • Yoon, Kyung-Koo;Bang, Se-Yoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.60-68
    • /
    • 2005
  • To investigate the effects of beam focusing in the etching of polymers with short pulse Excimer lasers, a polymer etching model of SSB's is combined with a beam focusing model. Through the numerical simulation, it was found that in the high laser fluence region, SSB model considering both photochemical and thermal contribution is considered to be suitable to predict the etched hole shape than a simple photochemical etching model. The average temperature distribution into the substance obtained by assuming 1-D heat transfer is found to be fairly similar to the fluence distribution on the ablated surface. The experimental etching data fur polymers are used to give material properties for ablation model. The fitted etch depth curve gives a nice agreement with the experimental data.

A Study on the Characteristics of the Functional Groups of the Alkanethiol Molecules in UV Laser Photochemical Patterning and Wet Etching Process (UV Laser를 이용한 광화학적 패터닝과 습식에칭에 따른 알칸티올 분자 작용기의 특성 연구)

  • Huh, Kab-Soo;Chang, Won-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.104-109
    • /
    • 2007
  • Photochemical patterning of self-assembled mono layers (SAMs) has been performed by diode pumped solid state (DPSS) 3rd harmonic Nd:$YVO_4$ laser with wavelength of 355 nm. SAMs patternings of parallel lines have subsequently been used either to generate compositional chemical patterns or fabricate microstructures by a wet etching. This paper describes a selective etching process with patterned SAMs of alkanetiolate molecules on the surface of gold. SAMs formed by the adsorption of alkanethiols onto gold substrate employs as very thin photoresists. In this paper, the influence of the interaction between the functional group of SAMs and the etching solution is studied with optimal laser irradiation conditions. The results show that hydrophobic functional groups of SAMs are more effective for selective chemical etching than the hydrophilic ones.

Photothermal and Photochemical Investigation on Laser Ablation of the Polyimide by 355nm UV Laser Processing (355nm UV 레이저 가공에 의한 폴리이미드의 광화학적 및 광열적 어블레이션에 관한 연구)

  • Oh, Jae-Yong;Shin, Bo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.147-152
    • /
    • 2007
  • UV laser ablation of polyimide is a combination of photochemical and photothermal mechanism. Photochemical mechanism is that molecular bonds are broken by photon energy and photothermal is evaporation and melt expulsion. When the laser processing, the etching depth needs to be calculated for prediction of processing result. In this paper, in order to predict the laser etching depth of polyimide by UV laser with the wavelength of 355nm, the theoretical model which includes both the photothermal and the photochemical effect was introduced. The model parameters were obtained by comparing with experimental results. The 3rd harmonic $Nd:YVO_4$ laser system was used in the experiment. From these experimental and theoretical results, the laser ablation of a polyimide was verified to achieve the highest quality microstructure.

Synchrotron Radiation Induced Photochemical Reactions for Semiconductor Processes

  • Rhee, Shi-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.3 no.2
    • /
    • pp.147-157
    • /
    • 1994
  • Valence or core electron excitations induced by Synchrotron radiation (SR) irradiation and ensuing chemical reactions can be applied for semiconductor processes i, e, deposition etching and modifications of thin film materials. Unique selectivity can be achieved by this photochemical reactions in deposition and etching. Some materials can be ecvaporated by SR irradiation which can be utilized for low temperature surface cleaning of thin films. Also SR irradiation significantly lowers the reaction temperature and photon activated surface reactions can be utilized for direct writing or projection lithography of electronic materials. This technique is especially effective in making nanoscale feature size with abrupt and well defined interfaces for next generation electronic devices.

  • PDF

Effects of Beam Parameters on Excimer Laser Ablation (엑사이머 레이저 어블레이션 가공에서의 빔변수의 영향)

  • Bang Se Yoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.38-46
    • /
    • 2005
  • In laser machining such as drilling with $CO_2$ or Nd:YAG laser, and etching or ablation with Excimer laser, one of the most important parameters affecting the machining is known to be beam characteristics. In this paper a numerical study is performed to investigate the effects of beam parameters, especially in the process of excimer laser ablation of polymers. Results of different beam conditions reveal that if the ablated depth is small compared to beam size the simple photochemical etching model is suitable to predict the etched shape, and that the importance of precise alignment becomes large as beam quality factor becomes larger.

A Study on Etching Patterns of Copper Surface by Chemical Corrosion (동(銅) 표면(表面)의 화학부식(腐蝕)에 의한 식각(蝕刻) 패턴 연구)

  • Kim, Min-Gun;Seo, Bong-Won
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.77-86
    • /
    • 2000
  • In order to observe the pattern forming of copper plate and chemical corrosion reaction, a study on the effect of the process parameters on the formation of micro-pattern by a photochemical etching of copper plate was carried out. The results are as follows : 1) Etching rate increases as the concentration of etchant increases under the regular condition of the temperature by the increasing of diffusion rate to surface. 2) Etching rate increases as the temperature of etchant increases by the fast acting of the material delivery of diffusion to surface under the regular condition of concentration. 3) It was found that etching speed increases as the material delivery of convection rising increased when the aeration speed of etchant increases. This result was from the fact acted by the material delivery of convection rising rather than material delivery of diffusion to the surface.

  • PDF

Fabrication of a shadow mask for OTFT circuit (유기 박막 트랜지스터 회로를 위한 섀도 마스크의 제작)

  • Yi S.M.;Park M.S.;Lee Y.S.;Lee H.S.;Chu C.N.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1277-1280
    • /
    • 2005
  • A high-aspect-ratio and high-resolution stainless steel shadow mask for organic thin-film transistors (OTFTs) circuit has been fabricated by a new method which combines photochemical machining, micro-electrical discharge machining (micro-EDM), and electrochemical etching (ECE). First, connection lines and source-drain holes are roughly machined by photochemical etching, and then the part of source and drain holes is finished by the combination of micro-EDM and ECE processes. Using this method a $100\;\mu{m}$ thick stainless steel (AISI 304) shadow mask for inverter can be fabricated with the channel length of $30\;\mu{m}\;and\;10\;\mu{m}\;respectively.\;The\;width\;of\;connection line\;is\;150\;\mu{m}$. The aspect ratio of the wall is about 5 and 15, respectively. Metal lines and source-drain electrodes of OTFTs were successfully deposited through the fabricated shadow mask.

  • PDF

Fabrication and Characterization of Direct-Patternable PZT Film Prepared by Photochemical Metal-Organic Deposition (광화학증착법에 의한 직접패턴 PZT 박막의 제조 및 특성)

  • Park, Hyeong-Ho;Park, Hyung-Ho;Kim, Tae-Song;Hill, Ross-H.
    • Korean Journal of Materials Research
    • /
    • v.18 no.2
    • /
    • pp.98-102
    • /
    • 2008
  • The ferroelectric properties of UV irradiated and non-irradiated PZT films prepared via photochemical metal-organic deposition using photosensitive precursors were characterized. Fourier transform infrared spectroscopy showed that complete removal of organic groups was possible through UV exposure of the spin-coated PZT precursor films at room temperature. The measured remnant polarization values of UV-irradiated and non-irradiated PZT films after annealing at $650^{\circ}C$ were 29 and $23\;{\mu}C/cm^2$, respectively. The UV irradiation was found to be effective for the enhancement of the <111> growth orientation and ferroelectric property of PZT film and in the direct patterning in the fabrication of micro-patterned systems without dry etching.

Excimer laser induced ablation of PMMA and PET (엑시머 레이저를 이용한 PMMA와 PET의 가공)

  • Shin, Dong-Sik;Lee, Je-Hoon;Seo, Jung;Kim, Do-Hoon
    • Laser Solutions
    • /
    • v.6 no.1
    • /
    • pp.33-40
    • /
    • 2003
  • The ablative decomposition mechanism of PMMA(polymethyl methacrylate) and PET(polyethylene terephthalate) with KrF excimer laser(λ : 248nm, pulse duration: 5㎱) is investigated. The UV/Vis spectrometer analysis showed that PMMA is a weak absorber and PET is a strong absorber at the wavelength of 248nm. The results(surface debris, melt, etch depth, etching shape) from drilling and direct writing experiments imply that ablation mechanism of PMMA is dominated by photothermal process, while that of PET is dominated by photochemical process.

  • PDF

A study of excimer laser ablation of polymer (폴리머의 엑시머레이저 어블레이션에 관한 연구)

  • Shin, Dong-Sik;Lee, Je-Hoon;Seo, Jung;Kim, Do-Hoon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1857-1860
    • /
    • 2003
  • The ablative decomposition mechanism of PMMA(polymethyt methacrylate), PET(polyethylene terephthalate) and PC(polycarbonate) with KrF excimer laser(λ: 248nm, pulse duration: 5ns) is investigated. The UV/Vis spectrometer analysis showed that PMMA is a weak absorber and PET, PC are a strong absorber at the wavelength of 248nm. The results(surface debris, melt, etch depth, etching shape) from drilling and direct writing experiments imply that ablation mechanism of PMMA is dominated by photothermal process, while that of PET, PC are dominated by photochemical process.

  • PDF