• 제목/요약/키워드: Phosphate accumulation

검색결과 201건 처리시간 0.032초

Isolation of Pseudomonas putida BM01 Accumulating High Amount of $PHA_{MCL}$

  • Song, Jae-Jun;Yoon, Sung-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • 제4권2호
    • /
    • pp.126-133
    • /
    • 1994
  • A Pseudomonas putida strain able to accumulate high amount of polyesters of medium-chain-length 3-hydroxyalkanoic acids ($PHA_{MCL)$) was isolated from soil in a landfill site using an enrichment technique. Culture condition of the isolated strain for polyester production in a one-step culture was optimized in a mineral-salts medium against pH and concentrations of ammonium sulfate, carbon source(e.g., octanoate), and phosphate. The optimal values for maximal cell growth and PHA accumulation were: pH; 7$\sim$8, $(NH_4)_2SO_4$; 8 mM, octanoate; 40 mM. The optimum temperature was in the range of $20\sim30^{\circ}C$, which was rather broader than in other bacteria. Cell growth was strongly inhibited by the phosphate limitation to less than 1 mM. An increase of phosphate concentration above 1 mM showed little effect on cell growth and polyester accumulation. When the strain was grown on octanoate under this optimized condition it produced 3.4 g dry biomass per liter and yielded 1.7 g PHA per liter amounting to 53 wt% of dry cells. The monomer units composing the polyester synthesized from octanoate were 3-hydroxyoctanoate (3HO), 3-hydroxycaproate (3HC), and 3-hydroxybutyrate (3HB) (85:13:2, mole ratio). Other low linear $C_3\simC_{10}$ monocarboxylic acids were also tested for polyester production.

  • PDF

인삼모상근의 생장과 Ginsenoside 생합성에 미치는 KH$_2$PO$_4$의 영향 (Effect of Potassium Phosphate on Growth and Ginsenosides Biosynthesis from Ginseng Hairy Root)

  • 인준교;박동식;이범수;이태후;김세영;노영덕;조동하;김성무;양덕춘
    • 한국약용작물학회지
    • /
    • 제14권6호
    • /
    • pp.371-375
    • /
    • 2006
  • To investigate effects on the growth and ginsenosides accumulation in ginseng hairy root, potassium phosphate was supplemented with 1.25, 2.5, and 5.0 mM concentration in 1/2 MS medium, respectively. Potassium phosphate supplement was increased the biomass and ginsenosides accumulation when it was dose at the concentration of 1.25 mM. And the growth rate of hairy root in the light condition was higher than in dark condition. The highest contents and productivity of ginsenosides were observed at the supplement of 1.25 mM potassium phosphate at the 7th day after the culture onset. Ginseng hairy root cultured in 20 L bioreactor supplemented with 1.25 mM KH$_2$PO$_4$ was increased the growth with 1,609 g (F${\cdot}$W) and ginsenosides content with 11.09 mg than those in control.

Analysis of a Sphingosine 1-phosphate Receptor $hS1P_3$ in Rat Hepatoma Cells

  • Im, Dong-Soon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제6권3호
    • /
    • pp.139-142
    • /
    • 2002
  • To examine intracellular signaling of human $S1P_3\;(hS1P_3),$ a sphingosine 1-phosphate (S1P) receptor in plasma membrane, $hS1P_3$ DNA was transfected into RH7777 rat hepatoma cell line, and the inhibition of forskolin-induced cAMP accumulation and activation of MAP kinases by S1P were tested. In $hS1P_3$ transformants, S1P inhibited forskolin-induced activation of adenylyl cyclase activity by about 80% and activated MAP kinases in dose-dependent and pertussis-toxin (PTX) sensitive manners. In oocytes expressing $hS1P_3$ receptor, S1P evoked $Cl^-$ conductance. These data suggested that PTX-sensitive G proteins are involved in $hS1P_3-mediated$ signaling, especially the positive action of S1P in cell proliferation. The potential advantages of rat hepatoma cells for the research of sphingosine 1-phosphate receptor are discussed.

Neuromedin B modulates phosphate-induced vascular calcification

  • Park, Hyun-Joo;Kim, Mi-Kyoung;Kim, Yeon;Kim, Hyung Joon;Bae, Soo-Kyung;Bae, Moon-Kyoung
    • BMB Reports
    • /
    • 제54권11호
    • /
    • pp.569-574
    • /
    • 2021
  • Vascular calcification is the heterotopic accumulation of calcium phosphate salts in the vascular tissue and is highly correlated with increased cardiovascular morbidity and mortality. In this study, we found that the expression of neuromedin B (NMB) and NMB receptor is upregulated in phosphate-induced calcification of vascular smooth muscle cells (VSMCs). Silencing of NMB or treatment with NMB receptor antagonist, PD168368, inhibited the phosphate-induced osteogenic differentiation of VSMCs by inhibiting Wnt/β-catenin signaling and VSMC apoptosis. PD168368 also attenuated the arterial calcification in cultured aortic rings and in a rat model of chronic kidney disease. The results of this study suggest that NMB-NMB receptor axis may have potential therapeutic value in the diagnosis and treatment of vascular calcification.

Effects of Organic Acids on Availability of Phosphate and Growth of Corn in Phosphate and Salts Accumulated Soil

  • Kim, Myung-Sook;Park, Seong-Jin;Lee, Chang-Hoon;Yun, Sun-Gang;Ko, Byong-Gu;Yang, Jae E.
    • 한국토양비료학회지
    • /
    • 제49권3호
    • /
    • pp.265-270
    • /
    • 2016
  • Accumulated Phosphate can be released by ligand exchange reaction of organic acids. The objective of this study was to evaluate effects of the organic acids on the availability of phosphate and the growth of crop in phosphate and salts accumulated soil. Soil samples were collected from farmer's plastic film house. Available phosphate and electrical conductivity of soil were $3,005mg\;kg^{-1}$ and $16.63mg\;kg^{-1}$ which were 6 and 8 times higher than the optimum range of soil for crop growth, respectively. Corns were cultivated in pots for 2 months. Treatments were no treatment (control), phosphate fertilizer (P), citric acid (CA) 1, 5, 10 mM, and oxalic acid (OA) 1, 5, 10 mM. Water soluble phosphorus, available phosphate, corn growth and uptake were determined after cultivation. Results showed that organic acids increased water soluble phosphorus and available phosphate. For the level of 10 mM, the order of effectiveness of organic acids for water soluble P was citric acid (44%) > oxalic acid (32%). Height and dry weight of corns were increased significantly by the treatment of citric acid 1 and 5 mM. Also, corn absorbed more phosphorus, nitrogen, potassium, calcium and magnesium in the treatment of citric acid 1 mM than these of other treatments. Even though phosphate availability of soil was enhanced by addition of citric acid 10 mM, the growth of corns decreased because high concentration of citric acid caused salt damage by increasement of electrical conductivity. Thus, the citric acid of 1 mM has the potential to improve the availability of phosphate and the healthy growth of corns.

재배지 토양의 화학성이 마늘의 생육 및 품질에 미치는 영향 (Effect of Chemical Properties of Cultivation Soils on the Plant Growth and the Quality of Garlic)

  • 김창배;김찬용;박만;이동훈;최정
    • 한국토양비료학회지
    • /
    • 제33권5호
    • /
    • pp.333-339
    • /
    • 2000
  • 경북지역의 마늘 주산지인 의성과 예천에서 마늘재배지를 논, 밭토양으로 구분하여 토양의 화학성과 마늘의 생육 및 품질과의 상관관계를 조사하였다. 토양의 화학성은 밭토양에 비해 논토양이 유효인산, $SO_4{^2-}$ 및 K의 함량이 높았으며 과다집적된 경향이었다. 의성 마늘재배지 토양이 예천 마늘재배지 토양에 비해 pH가 높고 유효인산의 함량이 낮은 것으로 나타났다. 마늘성분 중 pyruvate 함량이 예천지역의 $269{\mu}{\cdot}mole\;kg^{-1}$에 비해 의성지역이 $351{\mu}{\cdot}mole\;kg^{-1}$으로 높게 나타났다. 토양 중 유효인산, K, Mg와 마늘의 생육특성과는 고도의 유의성이 인정되었다. 마늘 재배지에서 인산의 축적은 마늘의 품질 및 생육을 저해하는 것으로 나타났다.

  • PDF

염류집적 국화 시설재배지 토양에서 인산분해미생물 시용이 토양화학성 및 국화생육에 미치는 영향 (Effect of Phosphate Solubilizing Bacteria Application on Soil Chemical Properties and Chrysanthemum Growth in Greenhouse Cultivation Area with High Salt Accumulation)

  • 이상현;정연화;한태호
    • 화훼연구
    • /
    • 제19권3호
    • /
    • pp.144-150
    • /
    • 2011
  • 본 연구는 염류집적 국화 재배지 토양적응성 인산분해미생물 탐색하고 선발된 미생물 시용을 통한 염류집적 국화 재배지 토양에서의 토양 화학성의 변화를 조사하였으며 이를 통하여 염류집적 국화 재배지 토양 환경 개선 기술을 개발하고자 수행되었다. 시험에 사용된 인산분해미생물은 염류집적토양에서 분리된 Pseudomonas putida(KSJ11), Acinetobacter calcoaceticus (KSJ3) 및 Acinetobacter calcoaceticus (WP20) 3종류이었으며 미생물의 제형은 버미큘라이트에 혼합되어 있는 상용화된 제품을 이용하였다. 시험장소는 광주광역시 광산구 소재 신우화훼농장의 15년간 작물이 재배되어 염류집적현상이 나타나는 국화재배지에서 처리구 $82m^2$에 각각의 미생물 제재 250 L씩 시용하였다. 염류집적이 이루어진 국화재배온실에 처리된 인산분해미생물 Acinetobacter calcoaceticus(KSJ3; WP20)는 유효인산을 효율적으로 분해하는 것으로 나타났으며, 특히 Acinetobacter calcoaceticus(WP20)는 염류의 분해능력이 높았다. 인산분해미생물 시용에 따라 토양내 칼륨, 칼슘 및 마그네슘의 함량의 증가가 A. calcoaceticus(KSJ3; WP20)처리구에서 뚜렷하게 나타났으며 이러한 변화의 영향으로 판단되는 토양내 전기전도도도 증가되었다. 또한 인산분해미생물 시용은 선충밀도의 감소효과를 나타내어 토양환경개선을 위한 재료로 활용될 가능성을 나타내었다. 결과적으로 염류집적이 이루어진 국화재배 온실에서의 인산분해미생물 시용은 처리된 미생물의 종류에 따라 차이를 나타내었지만 토양의 유효인산량 증가와 양이온의 유용화에는 분명한 효과를 나타내었다. 따라서 염류집적 토양에서의 인산분해미생물 시용은 토양양분의 효율적인 사용을 가능하게 할 수 있는 방안이 될 수 있기 때문에 시비량 절감 등의 방법으로 활용할 수 있다고 판단되었다.

Spatial Pattern of Copper Phosphate Precipitation Involves in Copper Accumulation and Resistance of Unsaturated Pseudomonas putida CZ1 Biofilm

  • Chen, Guangcun;Lin, Huirong;Chen, Xincai
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권12호
    • /
    • pp.2116-2126
    • /
    • 2016
  • Bacterial biofilms are spatially structured communities that contain bacterial cells with a wide range of physiological states. The spatial distribution and speciation of copper in unsaturated Pseudomonas putida CZ1 biofilms that accumulated 147.0 mg copper per g dry weight were determined by transmission electron microscopy coupled with energy dispersive X-ray analysis, and micro-X-ray fluorescence microscopy coupled with micro-X-ray absorption near edge structure (micro-XANES) analysis. It was found that copper was mainly precipitated in a $75{\mu}m$ thick layer as copper phosphate in the middle of the biofilm, while there were two living cell layers in the air-biofilm and biofilm-medium interfaces, respectively, distinguished from the copper precipitation layer by two interfaces. The X-ray absorption fine structure analysis of biofilm revealed that species resembling $Cu_3(PO_4)_2$ predominated in biofilm, followed by Cu-Citrate- and Cu-Glutathione-like species. Further analysis by micro-XANES revealed that 94.4% of copper were $Cu_3(PO_4)_2$-like species in the layer next to the air interface, whereas the copper species of the layer next to the medium interface were composed by 75.4% $Cu_3(PO_4)_2$, 10.9% Cu-Citrate-like species, and 11.2% Cu-Glutathione-like species. Thereby, it was suggested that copper was initially acquired by cells in the biofilm-air interface as a citrate complex, and then transported out and bound by out membranes of cells, released from the copper-bound membranes, and finally precipitated with phosphate in the extracellular matrix of the biofilm. These results revealed a clear spatial pattern of copper precipitation in unsaturated biofilm, which was responsible for the high copper tolerance and accumulation of the biofilm.

Inhibitory Effect of Chitosan and Phosphate Cross-linked Chitosan against Cucumber Mosaic Virus and Pepper Mild Mottle Virus

  • Gangireddygari, Venkata Subba Reddy;Chung, Bong Nam;Cho, In-Sook;Yoon, Ju-Yeon
    • The Plant Pathology Journal
    • /
    • 제37권6호
    • /
    • pp.632-640
    • /
    • 2021
  • Cucumber mosaic virus (CMV) and Pepper mild mottle virus (PMMoV) causes severe economic loss in crop productivity of both agriculture and horticulture crops in Korea. The previous surveys showed that naturally available biopolymer material - chitosan (CS), which is from shrimp cells, reduced CMV accumulation on pepper. To improve the antiviral activity of CS, it was synthesized to form phosphate cross-linked chitosan (PCS) and compared with the original CS. Initially, the activity of CS and PCS (0.01%, 0.05%, and 0.1% concentration) compound against PMMoV infection and replication was tested using a half-leaf assay on Nicotiana glutinosa leaves. The total number of local lesions represented on a leaf of N. glutinosa were counted and analyzed with phosphate buffer treated leaves as a negative control. The leaves treated with a 0.1% concentration of CS or PCS compounds exhibited an inhibition effect by 40-75% compared with the control leaves. The same treatment significantly reduced about 40% CMV accumulation measured by double antibody sandwich enzyme-linked immunosorbent assay and increased the relative expression levels of the NPR1, PR-1, cysteine protease inhibitor gene, LOX, PAL, SRC2, CRF3 and ERF4 genes analyzed by quantitative reverse transcriptase-polymerase chain reaction, in chili pepper plants.

Electrochemical Determination of 6-Benzylaminopurine (6-BAP) Using a Single-wall Carbon Nanotube-dicetyl Phosphate Film Coated Glassy Carbon Electrode

  • Li, Chunya
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권7호
    • /
    • pp.991-994
    • /
    • 2006
  • Herein, insoluble single-walled carbon nanotube (SWNT) was successfully dispersed into water in the presence of a special kind of surfactant-dicetyl phosphate (DCP), subsequently, a SWNT-DCP composite film coated glassy carbon electrode (GCE) was fabricated. The electrochemical behaviors of 6-benzylaminopurine (6-BAP) at the unmodified GCE and SWNT-DCP modified GCE were examined. It is found that the SWNT-DCP modified GCE remarkably enhances the oxidation peak current of 6-BAP, indicating great potential in the determination of trace level of 6-BAP. Finally, a sensitive and simple voltammetric method with a good linear relationship in the range of ${\times}5.0\;\;10^{-8}\sim 2.5\;{\times}\;10^{-6}$ mol/L, was developed for the determination of 6-BAP. The detection limit is as low as $2.0\;{\times}\;10^{-8}$ mol/L for 3-min accumulation. This newly-proposed method was successfully demonstrated with practical samples.