Effect of Phosphate Solubilizing Bacteria Application on Soil Chemical Properties and Chrysanthemum Growth in Greenhouse Cultivation Area with High Salt Accumulation

염류집적 국화 시설재배지 토양에서 인산분해미생물 시용이 토양화학성 및 국화생육에 미치는 영향

  • Lee, Sang-Hyun (Korean Pear Research Organization, Chonnam National University) ;
  • Joung, Youn-Hwa (Department of Horticulture, Chonnam National University) ;
  • Han, Tae-Ho (Department of Horticulture, Chonnam National University)
  • Received : 2011.09.09
  • Accepted : 2011.09.20
  • Published : 2011.09.30

Abstract

This study was carried out to develop the soil amendment practice by phosphate solubilizing bacteria application in greenhouse chrysanthemum cultivation area with high salt accumulation. The experimental site (ShinWoo Flower, GwangJu) has been cultivated chrysanthemum for 15 years and showed significant salt accumulation. The phosphate solubilizing bacteria, Pseudomonas putida (KSJ11), Acinetobacter calcoaceticus (KSJ3) and Acinetobacter calcoaceticus (WP20) formulated on vermiculite for easy use, were applicated. Each 250L of phosphate solubilizing bacteria was applied for $82m^2$ before planting. Acinetobacter calcoaceticus (KSJ3; WP20) increased the amount of soluble phosphorus in an effective level. Particularly, Acinetobacter calcoaceticus (WP20) increased not only the level of soluble phosphorus but also potassium, calcium and magnesium resulting in the increase of EC in the soil. The level of nematode was also decreased with the non-treated increased. As a result, we suggest that selected phosphate solubilizing bacteria (WP20) could be a useful practice for soil amendment in chrysanthemum plantation soil and provided an opportunity to reduce the use of the fertilizer during the cultivation period.

본 연구는 염류집적 국화 재배지 토양적응성 인산분해미생물 탐색하고 선발된 미생물 시용을 통한 염류집적 국화 재배지 토양에서의 토양 화학성의 변화를 조사하였으며 이를 통하여 염류집적 국화 재배지 토양 환경 개선 기술을 개발하고자 수행되었다. 시험에 사용된 인산분해미생물은 염류집적토양에서 분리된 Pseudomonas putida(KSJ11), Acinetobacter calcoaceticus (KSJ3) 및 Acinetobacter calcoaceticus (WP20) 3종류이었으며 미생물의 제형은 버미큘라이트에 혼합되어 있는 상용화된 제품을 이용하였다. 시험장소는 광주광역시 광산구 소재 신우화훼농장의 15년간 작물이 재배되어 염류집적현상이 나타나는 국화재배지에서 처리구 $82m^2$에 각각의 미생물 제재 250 L씩 시용하였다. 염류집적이 이루어진 국화재배온실에 처리된 인산분해미생물 Acinetobacter calcoaceticus(KSJ3; WP20)는 유효인산을 효율적으로 분해하는 것으로 나타났으며, 특히 Acinetobacter calcoaceticus(WP20)는 염류의 분해능력이 높았다. 인산분해미생물 시용에 따라 토양내 칼륨, 칼슘 및 마그네슘의 함량의 증가가 A. calcoaceticus(KSJ3; WP20)처리구에서 뚜렷하게 나타났으며 이러한 변화의 영향으로 판단되는 토양내 전기전도도도 증가되었다. 또한 인산분해미생물 시용은 선충밀도의 감소효과를 나타내어 토양환경개선을 위한 재료로 활용될 가능성을 나타내었다. 결과적으로 염류집적이 이루어진 국화재배 온실에서의 인산분해미생물 시용은 처리된 미생물의 종류에 따라 차이를 나타내었지만 토양의 유효인산량 증가와 양이온의 유용화에는 분명한 효과를 나타내었다. 따라서 염류집적 토양에서의 인산분해미생물 시용은 토양양분의 효율적인 사용을 가능하게 할 수 있는 방안이 될 수 있기 때문에 시비량 절감 등의 방법으로 활용할 수 있다고 판단되었다.

Keywords

Acknowledgement

Supported by : 농촌진흥청

References

  1. Choi, S.L. 2004. Studies on development of phosphate solubilizing biofertilizer. Ph.D. Diss., Dong-A Univ. pp. 1-66.
  2. Han, G.J. 2003. Bioremediation of salt injury soil. PhD. Diss., Paichai Univ. pp. 1-161.
  3. Hong, S.D. and H.T. Park. 1998. Rational fertilization for prevention of salts accumulation in Soils under the green house. Chungbuk Natl. Univ. Res. Ctr. Dept. Adv. Hort. Technol. p. 40-50.
  4. Kang, B.K., I.M. Jeong, J.J. Kim, S.D. Hong, and K.B. Min. 1997. Chemical characteristics of plastic film house soils in Chungbuk area. Kor. J. Soil Sci. Fert. 30: 265-271.
  5. Kim, S.A. and S.H. Yoo. 1999. Growth of plant and changes in phosphorus availability in phosphorus accumulated soils. Kor. J. Soil Sci. Fert. 32: 261-267.
  6. Kim, T.Y., K.D. Kim, I.H. Cho, E.Y. Nam, and B.H. Moon. 2003. Effects of salt reduction for leaf vegetable cultivation on high temperature in salt accumulation house. Kor. Soc. Bio-Environ. Control. 10: 213-216.
  7. Kohler, J., F. Caravaca, L. Carrasco, and A. Roldan. 2007. Interactions between a plant growth-promoting rhizobacterium, an AM fungus and a phosphate-solubilising fungus in the rhizosphere of Lactuca sativa. Appl. Soil Ecol. 35:480-487. https://doi.org/10.1016/j.apsoil.2006.10.006
  8. Lin, T.F., H.I. Huang, F.T. Shen, and C.C. Young. 2006. The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-Al74. Bioresour. Technol. 97:957-960 https://doi.org/10.1016/j.biortech.2005.02.017
  9. Oh, S.E., J.S. Son, Y.S. Ok, and J.H. Joo. 2010. A modified methodology of salt removal through flooding and drainage in a plastic film house soil. Kor. J. Soil Sci. Fert. 43: 565-571.
  10. Rodriguez, H. and R. Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17:319-339 https://doi.org/10.1016/S0734-9750(99)00014-2
  11. Rural Development Administration (RDA) (Online). 2010. http://soil.rda.go.kr/soil
  12. Son, H.J., G.T. Park, M.S. Cha, and M.S. Heo. 2006. Solubilization of insoluble inorganic phosphates by a novel saltand pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresour Technol. 97:204-210. https://doi.org/10.1016/j.biortech.2005.02.021
  13. Song, O.R. 2003. Characteristics of phosphate solubilizing microorganisms (PSMs) and analysis of related genes. Ph.D. Diss., Dong-A Univ. pp. 1-2.
  14. Souchie, E.L., O.J. Saggin-Junior, E.M. Silva, E.F. Campello, R. Azcon, and J.M. Barea. 2006. Communities of P-solubilizing bacteria, fungi and arbuscular mycorrhizal fungi in grass pasture and secondary forest of Paraty, RJ-Brazil. An Acad Bras Cienc 78:183-193. https://doi.org/10.1590/S0001-37652006000100016
  15. Spalding, R.F. and M.E. Exner. 1993. Occurrence of nitrate in groundwater-a review. J. Environ. Qual. 22:392-402.
  16. Vassilev N, M. Vassileva, I. Nikolaeva. 2006. Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl. Microbiol. Biotech. 71:137-144. https://doi.org/10.1007/s00253-006-0380-z
  17. Viruel, E., M.E. Lucca, F. Sineriz. 2011. Plant growth promotion traits of phosphobacteria isolated from Puna, Argentina Arch Microbiol. 193:489-496 https://doi.org/10.1007/s00203-011-0692-y
  18. Wan, J.H.C. and M.H. Wong. 2004. Effects of earthworm activity and P-solubilizing bacteria on P availability in soil. JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE- ZEITSCHRIFT FUR PFLANZENERNAHRUNG UND BODENKUNDE. 167:209-213. https://doi.org/10.1002/jpln.200321252
  19. Xiao, C.Q., R.A. Chi, W.S. Li, and Y. Zheng. 2011. Biosolubilization of phosphorus from rock phosphate by moderately thermophilic and mesophilic bacteria. MINERALS ENGINEERING 24: 956-958. https://doi.org/10.1016/j.mineng.2011.01.008
  20. Yuk, C.S., J.J. Kim, S.D. Hong, and B.G. Kang. 1993. Salt accumulation in horticultural soils of PE film house in Chungbuk area. Kor. J. Soil Sci. Fert. 26: 172-180.