Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.10.2021.0155

Inhibitory Effect of Chitosan and Phosphate Cross-linked Chitosan against Cucumber Mosaic Virus and Pepper Mild Mottle Virus  

Gangireddygari, Venkata Subba Reddy (Virology Unit, Horticulture and Herbal Crop Environment Division, National Institute of Horticulture and Herbal Science, Rural Development Administration)
Chung, Bong Nam (Virology Unit, Horticulture and Herbal Crop Environment Division, National Institute of Horticulture and Herbal Science, Rural Development Administration)
Cho, In-Sook (Virology Unit, Horticulture and Herbal Crop Environment Division, National Institute of Horticulture and Herbal Science, Rural Development Administration)
Yoon, Ju-Yeon (Virology Unit, Horticulture and Herbal Crop Environment Division, National Institute of Horticulture and Herbal Science, Rural Development Administration)
Publication Information
The Plant Pathology Journal / v.37, no.6, 2021 , pp. 632-640 More about this Journal
Abstract
Cucumber mosaic virus (CMV) and Pepper mild mottle virus (PMMoV) causes severe economic loss in crop productivity of both agriculture and horticulture crops in Korea. The previous surveys showed that naturally available biopolymer material - chitosan (CS), which is from shrimp cells, reduced CMV accumulation on pepper. To improve the antiviral activity of CS, it was synthesized to form phosphate cross-linked chitosan (PCS) and compared with the original CS. Initially, the activity of CS and PCS (0.01%, 0.05%, and 0.1% concentration) compound against PMMoV infection and replication was tested using a half-leaf assay on Nicotiana glutinosa leaves. The total number of local lesions represented on a leaf of N. glutinosa were counted and analyzed with phosphate buffer treated leaves as a negative control. The leaves treated with a 0.1% concentration of CS or PCS compounds exhibited an inhibition effect by 40-75% compared with the control leaves. The same treatment significantly reduced about 40% CMV accumulation measured by double antibody sandwich enzyme-linked immunosorbent assay and increased the relative expression levels of the NPR1, PR-1, cysteine protease inhibitor gene, LOX, PAL, SRC2, CRF3 and ERF4 genes analyzed by quantitative reverse transcriptase-polymerase chain reaction, in chili pepper plants.
Keywords
chili pepper; chitosan; DAS-ELISA; phosphate cross-linked chitosan; RT-qPCR;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Elsharkawy, M. M., Shimizu, M., Takahashi, H. and Hyakumachi, M. 2012. Induction of systemic resistance against cucumber mosaic virus by Penicillium simplicissimum GP17-2 in Arabidopsis and tobacco. Plant Pathol. 61:964-976.   DOI
2 Hassan, O. and Chang, T. 2017. Chitosan for eco-friendly control of plant disease. Asian J. Plant Pathol. 11:53-70.   DOI
3 Iriti, M. and Varoni, E. M. 2015. Chitosan-induced antiviral activity and innate immunity in plants. Environ. Sci. Pollut. Res. 22:2935-2944.   DOI
4 Anonymous. 2006. ICTVdb Management. 00.071.0.01.007. Pepper mild mottle virus. In: ICTVdb - The Universal Virus Database, version 4, ed. by C. Buchen-Osmond. Columbia University, New York, USA.
5 Chirkov, S. N., Il'ina, A. V., Surgucheva, N. A., Letunova, E. V., Varitsev, Y. A., Tatarinova, N. Y. and Varlamov, V. P. 2001. Effect of chitosan on systemic viral infection and some defense responses on potato plants. Russ. J. Plant Physiol. 48:774-779.   DOI
6 Lee, S. W., Heinz, R., Robb, J. and Nazar, R. N. 1994. Differential utilization of alternative initiation sites in a plant defense gene responding to environmental stimuli. Eur. J. Biochem. 226:109-114.   DOI
7 Liu, D., Jiao, S., Cheng, G., Li, X., Pei, Z., Pei, Y., Yin, H. and Du, Y. 2018. Identification of chitosan oligosaccharides binding proteins from the plasma membrane of wheat leaf cell. Int. J. Biol. Macromol. 111:1083-1090.   DOI
8 Damalas, C. A. and Koutroubas, S. D. 2016. Farmers' exposure to pesticides: toxicity types and ways of prevention. Toxics 4:1.   DOI
9 Jia, X., Meng, Q., Zeng, H., Wang, W. and Yin, H. 2016. Chitosan oligosaccharide induces resistance to tobacco mosaic virus in Arabidopsis via the salicylic acid-mediated signaling pathway. Sci. Rep. 6:26144.   DOI
10 Kwon, S.-J., Cho, I.-S., Yoon, J.-Y. and Chung, B.-N. 2018. Incidence and occurrence pattern of viruses on peppers growing in fields in Korea. Res. Plant Dis. 24:66-74.   DOI
11 Malerba, M. and Cerana, R. 2016. Chitosan effects on plant systems. Int. J. Mol. Sci. 17:996.   DOI
12 Pandey, V. P., Awasthi, M., Singh, S., Tiwari, S. and Dwivedi, U. N. 2017. A comprehensive review on function and application of plant peroxidases. Biochem. Anal. Biochem. 6:308.
13 Sudhakar, N., Nagendra-Prasad, D., Mohan, N. and Murugesan, K. 2007. Induction of systemic resistance in Lycopersicon esculentum cv. PKM1 (tomato) against cucumber mosaic virus by using ozone. J. Virol. Methods 139:71-77.   DOI
14 Kumaraswamy, R. V., Kumari, S., Choudhary, R. C., Pal, A., Raliya, R., Biswas, P. and Saharan, V. 2018. Engineered chitosan based nanomaterials: bioactivities, mechanisms and perspectives in plant protection and growth. Int. J. Biol. Macromol. 113: 494-506.   DOI
15 Liu, H., Du, Y., Wang, X. and Sun, L. 2004. Chitosan kills bacteria through cell membrane damage. Inter. J. Food Microbiol. 95:147-155.   DOI
16 Kim, J.-S., Lee, S.-H., Choi, H.-S., Kim, M.-K., Kwak, H.-R., Kim, J.-S., Nam, M., Cho, J.-D., Cho, I.-S. and Choi, G.-S. 2012. 2007-2011 Characteristics of plant virus infections on crop samples submitted from agricultural places. Res. Plant Dis. 18:277-289.   DOI
17 Lee, J. H., Hong, J. S., Ju, H. J. and Park, D. H. 2015. Occurrence of viral disease in the field- cultivated pepper in Korea from 2006 to 2010. Korean J. Org. Agric. 23:123-131.   DOI
18 Spoel, S. H., Koornneef, A., Claessens, S. M. C., Korzelius, J. P., Van Pelt, J. A., Mueller, M. J., Buchala, A. J., Metraux, J.-P., Brown, R., Kazan, K., Van Loon, L. C., Dong, X. and Pieterse, C. M. J. 2003. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760-770.   DOI
19 Qin, F., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2011. Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol. 52:1569-1582.   DOI
20 Cho, J. D., Kim, J. S., Lee, S. H., Choi, G. S. and Chung, B. N. 2007. Viruses and symptoms on peppers, and their infection types in Korea. Res. Plant Dis. 13:75-81.   DOI
21 Statistics Korea. 2020. Production of chili pepper, sesame and highland potatoes in 2020. URL http://kostat.go.kr [1 September 2021].
22 Povero, G., Loreti, E., Pucciariello, C., Santaniello, A., Di Tommaso, D., Di Tommaso, G., Kapetis, D., Zolezzi, F., Piaggesi, A. and Perata, P. 2011. Transcript profiling of chitosan-treated Arabidopsis seedlings. J. Plant Res. 124:619-629.   DOI
23 Rendina, N., Nuzzaci, M., Scopa, A., Cyuypers, A. and Sofo, A. 2019. Chitosan-elicited defense response in cucumber mosaic virus (CMV)-infected tomato plants. J. Plant Physiol. 234-235:9-17.   DOI
24 Sharif, R., Mujtaba, M., Ur Rahman, M., Shalmani, A., Ahmad, H., Anwar, T., Tianchan, D. and Wang, X. 2018. The multifunctional role of chitosan in horticultural crops: a review. Molecules 23:872.   DOI
25 Nie, P., Li, X., Wang, S., Guo, J., Zhao, H. and Niu, D. 2017. Induced systemic resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1-dependent signaling pathway and activates PAMP-triggered immunity in Arabidopsis. Front. Plant Sci. 8:238.
26 Lustriane, C., Dwivany, F. M., Suendo, V. and Reza, M. 2018. Effect of chitosan and chitosan-nanoparticles on post-harvest quality of banana fruits. J. Plant Biotechnol. 45:36-44.   DOI
27 Mejia-Teniente, L., de Dalia Duran-Flores, F., Chapa-Oliver, A. M., Torres-Pacheco, I., Cruz-Hernandez, A., Gonzalez-Chavira, M. M., Ocampo-Velaaquez, R. V. and Guevara Gonzalez, R. G. 2013. Oxidative and molecular responses in Capsicum annuum L. after hydrogen peroxide, salicylic acid and chitosan foliar applications. Int. J. Mol. Sci. 14:10178-10196.   DOI
28 Mou, Z., Fan, W. and Dong, X. 2003. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935-944.   DOI
29 Palukaitis, P. and Garcia-Arenal, F. 2003. Cucumoviruses. Adv. Virus Res. 62:241-323.   DOI
30 Petutschnig, E. K., Jones, A. M. E., Serazetdinova, L., Lipka, U. and Lipka, V. 2010. The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. J. Biol. Chem. 285:28902-28911.   DOI
31 Colson, P., Richet, H., Desnues, C., Balique, F., Moal, V., Grob, J.-J., Berbis, P., Lecoq, H., Harle, J.-R., Berland, Y. and Raoult, D. 2010. Pepper mild mottle virus, a plant virus associated with specific immune responses, fever, abdominal pains, and pruritus in humans. PLoS ONE 5:e10041.   DOI
32 Doares, S. H., Syrovets, T., Weiler, E. W. and Ryan, C. A. 1995. Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc. Natl. Acad. Sci. U. S. A. 92:4095-4098.   DOI
33 Yoon, J.-Y., Gangireddygari, V. S. R., Cho, I.-S., Chung, B.-N., Yoon, B.-D. and Choi, S.-K. 2021. Effects of b-glucans from Aureobasidium pullulans on cucumber mosaic virus infection in chili pepper. Res. Plant Dis. 27:17-23.   DOI
34 Vitti, A., Pellegrini, E., Nali, C., Lovelli, S., Sofo, A., Valerio, M., Scopa, A. and Nuzzaci, M. 2016. Trichoderma harzianum T-22 induces systemic resistance in tomato infected by cucumber mosaic virus. Front. Plant Sci. 7:1520.
35 Wetter, C., Conti, M., Altschuh, D., Tabillion, R. and van Regenmortel, M. H. V. 1984. Pepper mild mottle virus, a Tobamovirus infecting pepper cultivars in Sicily. Phytopathology 74:405-410.   DOI
36 Wu, Y., Zhang, D., Chu, J. Y., Boyle, P., Wang, Y., Brindle, I. D., De Luca, V. and Despres, C. 2012. The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep. 1:639-647.   DOI
37 Pratiwi, A., Dwivany, F. M., Larasati, D., Islamia, H. C. and Martien, R. 2015. Effect of chitosan coating and bamboo FSC (fruit storage chamber) to expand banana shelf life. AIP Conf. Proc. 1677:100005.   DOI
38 Zhang, D., Wang, H., Hu, Y. and Liu, Y. 2015. Chitosan controls postharvest decay on cherry tomato fruit possibly via the mitogen-activated protein kinase signaling pathway. J. Agric. Food Chem. 63:7399-7404.   DOI
39 Niu, D., Wang, X., Wang, Y., Song, X., Wang, J., Guo, J. and Zhao, H. 2016. Bacillus cereus AR156 activates PAMP-triggered immunity and induces a systemic acquired resistance through a NPR1- and SA-dependent signaling pathway. Biochem. Biophys. Res. Commun. 469:120-125.   DOI
40 Yin, H. and Du, Y. 2010. Mechanism and application of chitin/ chitosan and their derivatives in plant protection. In: Chitin, chitosan, oligosaccharides and their derivatives, ed. by S.-K. Kim, pp. 605-617. CRC Press, Boca Raton, FL, USA.
41 Sivakumar, D., Bill, M., Korsten, L. and Thompson, K. 2016. Integrated application of chitosan coating with different postharvest treatments in the control of postharvest decay and maintenance of overall fruit quality. In: Chitosan in the preservation of agricultural commodities, eds. by S. BautistaBanos, G. Romanazzi and A. Jimenez-Aparicio, pp. 127-153. Academic Press, Cambridge, MA, USA.
42 Adams, M. J., Antoniw, J. F. and Kreuze, J. 2009. Virgaviridae: a new family of rod-shaped plant viruses. Arch. Virol. 154:1967-1972.   DOI
43 Choi, G. S., Kim, J. H., Lee, D. H., Kim, J. S. and Ryu, K. H. 2005. Occurrence and distribution of viruses infecting pepper in Korea. Plant Pathol. J. 21:258-261.   DOI
44 Chun, S.-C. and Chandrasekaran, M. 2019. Chitosan and chitosan nanoparticles induced expression of pathogenesis-related proteins genes enhance biotic stress tolerance in tomato. Int. J. Biol. Macromol. 125:948-954.   DOI
45 Rohini, N. and Lakshmanan, V. 2017. Evaluation studies of hot pepper hybrids (Capsicum annum L.) for yield and quality characters. Electron. J. Plant Breed. 8:643-651.   DOI
46 Shahrajabian, M. H., Chaski, C., Polyzos, N., Tzortzakis, N. and Petropoulos, S. A. 2021. Sustainable agriculture systems in vegetable production using chitin chitosan as plant biostimulants. Biomolecules 11:819.   DOI
47 Xing, K., Zhu, X., Peng, X. and Qin, S. 2015. Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agron. Sustain. Dev. 35:569-588.   DOI
48 Nagorskaya, V., Reunov, A., Lapshina, L., Davydova, V. and Yermak, I. 2014. Effect of chitosan on tobacco mosaic virus (TMV) accumulation, hydrolase activity, and morphological abnormalities of the viral particles in leaves of N. tabacum L. Samsun. Virol. Sin. 29:250-256.   DOI
49 Feliziani, E., Landi, L. and Romanazzi, G. 2015. Preharvest treatments with chitosan and other alternatives to conventional fungicides to control postharvest decay of strawberry. Carbohydr. Polym. 132:111-117.   DOI
50 Voss-Fels, K. and Snowdon, R. J. 2016. Understanding and utilizing crop genome diversity via high-resolution genotyping. Plant Biotechnol. J. 14:1086-1094.   DOI
51 Yoon, J. Y., Paluakaitis, P. and Choi, S. K. 2019. Host range. In: Cucumber mosaic virus, eds. by P. Palukaitis and F. Garcia-Arenal, pp. 15-18. American Phytopathological Society, St. Paul, MN, USA.
52 Choi, G.-S., Kwon, S.-J., Choi, S.-K., Cho, I.-S. and Yoon, J.-Y. 2015. Characteristics of cucumber mosaic virus-GTN and resistance evaluation of chilli pepper cultivars to two cucumber mosaic virus isolates. Res. Plant Dis. 21:99-102.   DOI
53 Ali, A., Zahid, N., Manickam, S., Siddiqui, Y., Alderson, P. G. and Maqbool, M. 2014. Induction of lignin and pathogenesis-related proteins in dragon fruit plants in response to submicron chitosan dispersions. Crop Prot. 63:83-88.   DOI