Browse > Article
http://dx.doi.org/10.4014/jmb.1605.05075

Spatial Pattern of Copper Phosphate Precipitation Involves in Copper Accumulation and Resistance of Unsaturated Pseudomonas putida CZ1 Biofilm  

Chen, Guangcun (Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University)
Lin, Huirong (Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University)
Chen, Xincai (Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.12, 2016 , pp. 2116-2126 More about this Journal
Abstract
Bacterial biofilms are spatially structured communities that contain bacterial cells with a wide range of physiological states. The spatial distribution and speciation of copper in unsaturated Pseudomonas putida CZ1 biofilms that accumulated 147.0 mg copper per g dry weight were determined by transmission electron microscopy coupled with energy dispersive X-ray analysis, and micro-X-ray fluorescence microscopy coupled with micro-X-ray absorption near edge structure (micro-XANES) analysis. It was found that copper was mainly precipitated in a $75{\mu}m$ thick layer as copper phosphate in the middle of the biofilm, while there were two living cell layers in the air-biofilm and biofilm-medium interfaces, respectively, distinguished from the copper precipitation layer by two interfaces. The X-ray absorption fine structure analysis of biofilm revealed that species resembling $Cu_3(PO_4)_2$ predominated in biofilm, followed by Cu-Citrate- and Cu-Glutathione-like species. Further analysis by micro-XANES revealed that 94.4% of copper were $Cu_3(PO_4)_2$-like species in the layer next to the air interface, whereas the copper species of the layer next to the medium interface were composed by 75.4% $Cu_3(PO_4)_2$, 10.9% Cu-Citrate-like species, and 11.2% Cu-Glutathione-like species. Thereby, it was suggested that copper was initially acquired by cells in the biofilm-air interface as a citrate complex, and then transported out and bound by out membranes of cells, released from the copper-bound membranes, and finally precipitated with phosphate in the extracellular matrix of the biofilm. These results revealed a clear spatial pattern of copper precipitation in unsaturated biofilm, which was responsible for the high copper tolerance and accumulation of the biofilm.
Keywords
Pseudomonas putida CZ1; unsaturated biofilm; copper phosphate; spatial pattern; speciation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Harrison JJ, Rabiei M, Turner RJ, Badry EA, Sproule KM, Ceri H. 2006. Metal resistance in Candida biofilms. FEMS Microbiol. Ecol. 55: 479-491.
2 Higham DP, Sadler PJ, Scawen MD. 1986. Effect of cadmium on the morphology, membrane integrity and permeability of Pseudomonas putida. J. Gen. Microbiol. 132: 1475-1482.
3 Wentland EJ, Stewart PS, Huang CT, McFeters GA. 1996. Spatial variations in growth rate within Klebsiella pneumoniae colonies and biofilm. Biotechnol. Prog. 12: 316-321.   DOI
4 Macaskie LE, Jeong BC, Tolley MR. 1994. Enzymically accelerated biomineralization of heavy metals: application to the removal of americium and plutonium from aqueous flows. FEMS Microbiol. Rev. 14: 351-367.   DOI
5 Houben D, Sonnet P. 2015. Impact of biochar and rootinduced changes on metal dynamics in the rhizosphere of Agrostis capillaris and Lupinus albus. Chemosphere 139: 644-651.   DOI
6 Hu N, Zhao B. 2007. Key genes involved in heavy-metal resistance in Pseudomonas putida CD2. FEMS Microbiol. Lett. 267: 17-22.   DOI
7 Keasling JD. 1997. Regulation of intracellular toxic metals and other cations by hydrolysis of polyphosphate. Ann. NY. Acad. Sci. 829: 242-249.   DOI
8 Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VA, et al. 2002. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol. 4: 799-808.   DOI
9 Macaskie LE, Bonthrone KM, Yong P, Goddard DT. 2000. Enzymically mediated bioprecipitation of uranium by a Citrobacter sp.: a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation. Microbiology 146: 1855-1867.   DOI
10 Nikolaev YA, Plakunov VK. 2007. Biofilm - "City of microbes" or an analogue of multicellular organisms? Microbiology 76: 125-138.   DOI
11 Meitzner G, Huang ES. 1992. Analysis of mixtures of compounds of copper using K-edge X-ray absorption spectroscopy. Fresenius J. Anal. Chem. 342: 61-64.   DOI
12 Atlas RM. 2005. Handbook of Media for Environmental Microbiology. Taylor and Francis, New York.
13 Quaranta D, McCarty R, Bandarian V, Rensing C. 2007. The copper-inducible cin operon encodes an unusual methioninerich azurin-like protein and a Pre-Q0 reductase in Pseudomonas putida KT2440. J. Bacteriol. 189: 5361-5371.   DOI
14 Fang L, Wei X, Cai P, Huang Q, Chen H, Liang W, Rong X. 2010. Role of extracellular polymeric substances in Cu(II) adsorption on Bacillus subtilis and Pseudomonas putida. Bioresour. Technol. 102: 1137-1141.
15 Renninger N, Knopp R, Nitsche H, Clark DS, Keasling JD. 2004. Uranyl precipitation by Pseudomonas aeruginosa via controlled polyphosphate metabolism. Appl. Environ. Microbiol. 70: 7404-7412.   DOI
16 Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG. 2002. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184: 1140-1154.   DOI
17 Saxena D, Srivastava S. 1998. Carbon source-starvationinduced precipitation of copper by Pseudomonas putida strain S4. World J. Microbiol. Biotechnol. 14: 921-923.   DOI
18 Schooling SR, Beveridge TJ. 2006. Membrane vesicles: an overlooked component of the matrices of biofilms. J. Bacteriol. 188: 5945-5957.   DOI
19 Schooling SR, Hubley A, Beveridge TJ. 2009. Interactions of DNA with biofilm-derived membrane vesicles. J. Bacteriol. 191: 4097-4102.   DOI
20 Alvarez S, Jerez CA. 2004. Copper ions stimulate polyphosphate degradation and phosphate efflux in Acidithiobacillus ferrooxidans. Appl. Environ. Microbiol. 70: 5177-5182.   DOI
21 Timmis KN. 2002. Pseudomonas putida: a cosmopolitan opportunist par excellence. Environ. Microbiol. 4: 779-781.   DOI
22 Shi JY, Wu B, Yuan XF, Cao YY, Chen XC, Chen YZ, Hu TD. 2008. An X-ray absorption spectroscopy investigation of speciation and biotransformation of copper in Elsholtzia splendens. Plant Soil 302: 163-174.   DOI
23 Auerbach ID, Sorensen C, Hansma HG, Holden PA. 2000. Physical morphology and surface properties of unsaturated Pseudomonas putida biofilms. J. Bacteriol. 182: 3809-3815.   DOI
24 Canovas D, Cases I, de Lorenzo V. 2003. Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ. Microbiol. 5: 1242-1256.   DOI
25 Adaikkalam V, Swarup S. 2002. Molecular characterization of an operon, cueAR, encoding a putative P1-type ATPase and a MerR-type regulatory protein involved in copper homeostasis in Pseudomonas putida. Microbiology 148: 2857-2867.   DOI
26 Chen GC, Chen XC, Yang YQ, H ay AG, Y u XH, Chen YX. 2011. Sorption and distribution of copper in unsaturated Pseudomonas putida CZ1 biofilms as determined by X-Ray fluorescence microscopy. Appl. Environ. Microbiol. 77: 4719-4727.   DOI
27 Chen X C, H u SP, S hen CF, Dou , CM S hi J Y, et al. 2009. Interaction of Pseudomonas putida CZ1 with clays and ability of the composite to immobilize copper and zinc from solution. Bioresour. Technol. 100: 330-337.   DOI
28 Spohna M, Treichelb NS, Cormanna M, Schloterb M, Fischerb D. 2015. Distribution of phosphatase activity and various bacterial phyla in the rhizosphere of Hordeum vulgare L. depending on P availability. Soil Biol. Biochem. 89: 44-51.   DOI
29 Stewart PS, Franklin MJ. 2008. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 6: 199-210.   DOI
30 Thomas RAP, Beswick AJ, Basnakova G, Moller R, Macaskie LE. 2000. Growth of naturally occurring microbial isolates in metal-citrate medium and bioremediation of metal-citrate wastes. J. Chem. Technol. Biotechnol. 75: 187-195.   DOI
31 Webb SM. 2005. SIXpack: a graphical user interface for XAS analysis using IFEFFIT. Phys. Scr. T115: 1011-1014.
32 Chen XC, Shi JY, Chen YX, Xu XH, Xu SY, et al. 2006. Tolerance and biosorption of copper and zinc by Pseudomonas putida CZ1 isolated from metal-polluted soil. Can. J. Microbiol. 52: 308-316.   DOI
33 Chen XC, Shi JY, Chen YX, Xu XJ, Chen LT. 2007. Determination of copper binding in Pseudomonas putida CZ1 by chemical modifications and X-ray absorption spectroscopy. Appl. Microbiol. Biotechnol. 74: 881-889.   DOI
34 van Hullebusch E, Zandvoort M, Lens P. 2003. Metal immobilisation by biofilms: mechanisms and analytical tools. Rev. Environ. Sci. Biotechnol. 2: 9-33.   DOI
35 Danhorn T, Fuqua C. 2007. Biofilm formation by plantassociated bacteria. Annu. Rev. Microbiol. 61: 401-422.   DOI
36 Espinosa-Urgel M, Kolter R, Ramos JL. 2002. Root colonization by Pseudomonas putida: love at first sight. Microbiology 148: 1-3.   DOI
37 Gadd GM. 2000. Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr. Opin. Biotechnol. 11: 271-279.   DOI
38 Wang B, L iu P, Jiang W, Pan H, Xu R, Tang R . 2008. Yeast cells with an artificial mineral shell: protection and modification of living cells by biomimetic mineralization. Angew. Chem. Int. Ed. Engl. 47: 3560-3564.   DOI