어휘 인식 시스템에서 인식률 저하의 요인으로는 유사한 음소 인식과 부정확한 어휘 제공으로 인해 오인식 오류가 존재한다. 부정확한 어휘의 입력으로 특징을 추출하여 인식할 경우 오인식의 결과가 나타나거나 유사한 음소로 인식되며 특징 추출이 제대로 이루어지지 않으면 음소 인식 시 유사한 음소로 인식하게 된다. 따라서 본 논문에서는 음소가 갖는 특징을 기반으로 음소 유사율을 이용한 어휘 인식 후처리에서의 오류 보정 후처리 시스템을 제안하였다. 음소 유사율은 모노폰으로 훈련시킨 훈련 데이터를 각각의 음소에 MFCC와 LPC 특징 추출 방법을 이용하여 구하였다. 유사한 음소는 정확한 음소로 인식할 수 있도록 유도하여 부정확한 어휘 제공으로 인하여 오인식되는 오류를 최소화하였다. 음소 유사율과 신뢰도를 이용하여 오류 보정율을 구하였으며, 어휘 인식 과정에서 오류로 판명된 어휘에 대하여 오류 보정을 수행하였다. 에러패턴 학습을 이용한 시스템과 의미기반을 이용한 시스템에 비해 시스템 성능 평가 결과 MFCC와 LPC는 각각 7.5%와 5.3%의 인식 향상률을 보였다.
어휘 인식 시스템은 부정확한 어휘 제공과 유사한 음소 인식으로 인식률이 저하되며 이는 유사한 음소인식 오인식과 효율적 특징 추출 처리를 위한 방법을 필요로 한다. 따라서 본 논문에서는 음소가 갖는 특징을 기반으로 바타챠랴 거리 측정법을 이용한 음소 유사율 오류 보정 개선 시스템을 제안하였다. 음소 유사율은 모노폰으로 훈련시킨 훈련 데이터의 음소에 HMM 특징 추출 방법을 이용하였으며 유사한 음소는 바타챠랴 거리 측정법을 이용하여 정확한 음소로 인식할 수 있도록 유도하여 인식률 향상 효과를 얻을 수 있었다. 이를 유클리디안 거리 측정법과 동적타임 워핑 시스템에 비교한 시스템 성능 평가 결과 1.2%의 향상된 97.91% 인식률을 보였다.
통신 모바일 단말기에서 어휘 인식 시스템은 부정확한 어휘로부터 음소 특징을 추출하기 때문에 음소를 인식하지 못하거나 유사한 음소 오인식 오류로 인한 낮은 인식률의 문제점을 가진다. 이러한 문제를 해결하기 위해서, 본 논문에서는 입력 음소는 음소 유사율 처리를 통해 음소 사이의 거리를 측정하여 수치로 나타내고, 신뢰도 측정을 통하여 인식되어진 결과를 확인하는 시스템을 제안하였다. 이로 인해 부정확한 어휘 제공으로 인한 오인식 오류를 최소화하였으며 음소 유사율과 신뢰도를 이용하여 오류 보정율을 구하였다. 기존 방법인 에러 패턴 학습을 이용한 시스템과 의미기반을 이용한 시스템의 성능 평가 결과 2.7%의 인식 향상율을 보였다.
확률적 패턴 매칭과 동적 패턴 매칭의 어휘 인식 오류 보정 방법에서는 핵심어를 기반으로 문장을 의미론적으로 분석하므로 형태론적 변형에 따른 핵심어 분석이 어려운 문제점을 가지고 있다. 이를 해결하기 위해 본 연구에서는 음절 복원 알고리즘에서 형태소 분석을 이용하여 인식된 음소 열을 의미 분석 과정을 통해 음소의 의미를 파악하고 형태론적 분석으로 문장을 복원하여 어휘 오인식률을 감소하였다. 시스템 분석을 위해 음소 유사률과 신뢰도를 이용하여 오류 보정률을 구하였으며, 어휘 인식 과정에서 오류로 판명된 어휘에 대하여 오류 보정을 수행하였다. 에러 패턴 학습을 이용한 방법과 오류 패턴 매칭 기반 방법, 어휘 의미 패턴 기반 방법의 성능 평가 결과 2.0%의 인식 향상률을 보였다.
고립단어 음성인식 시스템이 실용적이 되려면 인식 대상 이외의 단어를 거절할 수 있는 기능이 요구된다. 본 논문에서는 집단화된 음소 모델과 likelihood ratio에 의한 후처리 방법을 사용하여 거절기능을 구현하는 방법을 제안하였다. 기본적인 음성인식 시스템은 단어 단위 연속 HMM을 사용하였고, 6개의 집단화된 음소 모델들은 음성학적으로 균형잡힌 음성 데이터베이스를 이용하여 훈련된 45개의 문맥독립 음소 모델들로부터 통계적 방법에 의하여 생성되었다. 22개의 부서 명칭을 대상으로 한 화자독립 고립단어 인식시스템에서 거절성능을 시험하여 본 결과, 가장 높은 확률값과 두 번째 높은 확률값을 가지는 후보단어들 간의 차이값에 의하여 거절기능을 수행하는 기존의 후처리 방법보다 성능이 향상됨을 알 수 있었다. 또한 이 집단화된 음소모델은 인식 대상 어휘가 다른 고립단어 인식 시스템에도 재훈련 없이 그대로 사용될 수 있다.
This paper proposed the phonemic segmentation method that employed two types of Likelihood Ratio that measures the change of spectral structure. By this method, isolated digits and words of VCV form are segmented into phoneme-unit and especially, first-burst part in an aspirated bilabial plosive is divided.
어휘 인식 시스템의 오류 보정방법으로는 오류 패턴매칭 기반 방법과 어휘의미 패턴 기반방법이있으며, 이들 방법에서는 오류 보정을 위해 핵심어를 의미적으로 분석하지 못하는 문제점을 가지고 있다. 이를 개선하기 위해 본 논문에서는 음절 복원 알고리즘을 이용한 핵심어 오류 보정 시스템을 제안한다. 인식된 음소 열을 의미 분석 과정을 거쳐 음소가 갖는 의미를 파악하고 음절 복원 알고리즘을 통해 음운 변동이 적용되기 이전의 문자열로 복원하므로 핵심어를 명확히 분석하고 오인식을 줄일 수 있다. 시스템 분석을 위해 음소 유사율과 신뢰도를 이용하여 오류 보정율을 구하였으며, 어휘 인식 과정에서 오류로 판명된 어휘에 대하여 오류 보정을 수행하였다. 에러 패턴 학습을 이용한 방법과 오류 패턴 매칭 기반 방법, 어휘 의미 패턴 기반 방법의 성능 평가 결과 3.0%의 인식 향상율을 보였다.
In this paper, we present several confidence measures (CM) for speech recognition systems to evaluate the reliability of recognition results. We propose heuristic CMs such as mean log-likelihood score, N-best word log-likelihood ratio, likelihood sequence fluctuation and likelihood ratio testing(LRT)-based CMs using several types of anti-models. Furthermore, we propose new algorithms to add weighting terms on phone-level log-likelihood ratio to merge word-level log-likelihood ratios. These weighting terms are computed from the distance between acoustic models and knowledge-based phoneme classifications. LRT-based CMs show better performance than heuristic CMs excessively, and LRT-based CMs using phonetic information show that the relative reduction in equal error rate ranges between $8{\sim}13%$ compared to the baseline LRT-based CMs. We use the support vector machine to fuse several CMs and improve the performance of utterance verification. From our experiments, we know that selection of CMs with low correlation is more effective than CMs with high correlation.
본 논문에서는 대용량 음성인식 시스템의 인식시간을 감축하기 위하여 후보단어를 선정하는 효과적인 방법을 제안하고 이 방법의 성능을 향상시키기 위하여 spectral smoothing과 temporal smoothing을 사용하는 것에 관하여 연구하였다. 제안된 방법은 사전내의 각 단어에 대하여 음성인식 단위의 음성 spectrum관찰확률과 길이정보를 이용하여 대강의 관찰확률을 계산하여 후보단어를 선정한다. 제안된 방법을 음소단위의 HMM을 이용하는 1160단어 인식 시스템에 적용한 결과, 전체 계산량의 74% 가량을 감축할 수 있었으며 이때 인식율의 감소는 매우 작았다. 또한 제안된 대감의 likelihood점수 계산방법은 Viterbi방법에 의하여 계산되는 likelihood 점수를 잘 추정함을 알 수 있었다.
This paper presents a method that improves the performance of the personal voice dialling system in which speaker Independent phoneme HMM's are used. Since the speaker independent phoneme HMM based voice dialing system uses only the phone transcription of the input sentence, the storage space could be reduced greatly. However, the performance of the system is worse than that of the system which uses the speaker dependent models due to the phone recognition errors generated when the speaker Independent models are used. In order to solve this problem, a new method that jointly estimates transformation vectors for the speaker adaptation and transcriptions from training utterances is presented. The biases and transcriptions are estimated iteratively from the training data of each user with maximum likelihood approach to the stochastic matching using speaker-independent phone models. Experimental result shows that the proposed method is superior to the conventional method which used transcriptions only.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.