• 제목/요약/키워드: Phoneme Likelihood

검색결과 21건 처리시간 0.021초

음소 유사율 오류 보정을 이용한 어휘 인식 후처리 시스템 (Vocabulary Recognition Post-Processing System using Phoneme Similarity Error Correction)

  • 안찬식;오상엽
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권7호
    • /
    • pp.83-90
    • /
    • 2010
  • 어휘 인식 시스템에서 인식률 저하의 요인으로는 유사한 음소 인식과 부정확한 어휘 제공으로 인해 오인식 오류가 존재한다. 부정확한 어휘의 입력으로 특징을 추출하여 인식할 경우 오인식의 결과가 나타나거나 유사한 음소로 인식되며 특징 추출이 제대로 이루어지지 않으면 음소 인식 시 유사한 음소로 인식하게 된다. 따라서 본 논문에서는 음소가 갖는 특징을 기반으로 음소 유사율을 이용한 어휘 인식 후처리에서의 오류 보정 후처리 시스템을 제안하였다. 음소 유사율은 모노폰으로 훈련시킨 훈련 데이터를 각각의 음소에 MFCC와 LPC 특징 추출 방법을 이용하여 구하였다. 유사한 음소는 정확한 음소로 인식할 수 있도록 유도하여 부정확한 어휘 제공으로 인하여 오인식되는 오류를 최소화하였다. 음소 유사율과 신뢰도를 이용하여 오류 보정율을 구하였으며, 어휘 인식 과정에서 오류로 판명된 어휘에 대하여 오류 보정을 수행하였다. 에러패턴 학습을 이용한 시스템과 의미기반을 이용한 시스템에 비해 시스템 성능 평가 결과 MFCC와 LPC는 각각 7.5%와 5.3%의 인식 향상률을 보였다.

바타챠랴 거리 측정법을 이용한 음소 유사율 오류 보정 개선 시스템 (Phoneme Similarity Error Correction System using Bhattacharyya Distance Measurement Method)

  • 안찬식;오상엽
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권6호
    • /
    • pp.73-80
    • /
    • 2010
  • 어휘 인식 시스템은 부정확한 어휘 제공과 유사한 음소 인식으로 인식률이 저하되며 이는 유사한 음소인식 오인식과 효율적 특징 추출 처리를 위한 방법을 필요로 한다. 따라서 본 논문에서는 음소가 갖는 특징을 기반으로 바타챠랴 거리 측정법을 이용한 음소 유사율 오류 보정 개선 시스템을 제안하였다. 음소 유사율은 모노폰으로 훈련시킨 훈련 데이터의 음소에 HMM 특징 추출 방법을 이용하였으며 유사한 음소는 바타챠랴 거리 측정법을 이용하여 정확한 음소로 인식할 수 있도록 유도하여 인식률 향상 효과를 얻을 수 있었다. 이를 유클리디안 거리 측정법과 동적타임 워핑 시스템에 비교한 시스템 성능 평가 결과 1.2%의 향상된 97.91% 인식률을 보였다.

미등록어 거절 알고리즘에서 음소 특성 추출의 신뢰도 측정 개선 (Reliability measure improvement of Phoneme character extract In Out-of-Vocabulary Rejection Algorithm)

  • 오상엽
    • 디지털융복합연구
    • /
    • 제10권6호
    • /
    • pp.219-224
    • /
    • 2012
  • 통신 모바일 단말기에서 어휘 인식 시스템은 부정확한 어휘로부터 음소 특징을 추출하기 때문에 음소를 인식하지 못하거나 유사한 음소 오인식 오류로 인한 낮은 인식률의 문제점을 가진다. 이러한 문제를 해결하기 위해서, 본 논문에서는 입력 음소는 음소 유사율 처리를 통해 음소 사이의 거리를 측정하여 수치로 나타내고, 신뢰도 측정을 통하여 인식되어진 결과를 확인하는 시스템을 제안하였다. 이로 인해 부정확한 어휘 제공으로 인한 오인식 오류를 최소화하였으며 음소 유사율과 신뢰도를 이용하여 오류 보정율을 구하였다. 기존 방법인 에러 패턴 학습을 이용한 시스템과 의미기반을 이용한 시스템의 성능 평가 결과 2.7%의 인식 향상율을 보였다.

의미 분석과 형태소 분석을 이용한 핵심어 인식 시스템 (Key-word Recognition System using Signification Analysis and Morphological Analysis)

  • 안찬식;오상엽
    • 한국멀티미디어학회논문지
    • /
    • 제13권11호
    • /
    • pp.1586-1593
    • /
    • 2010
  • 확률적 패턴 매칭과 동적 패턴 매칭의 어휘 인식 오류 보정 방법에서는 핵심어를 기반으로 문장을 의미론적으로 분석하므로 형태론적 변형에 따른 핵심어 분석이 어려운 문제점을 가지고 있다. 이를 해결하기 위해 본 연구에서는 음절 복원 알고리즘에서 형태소 분석을 이용하여 인식된 음소 열을 의미 분석 과정을 통해 음소의 의미를 파악하고 형태론적 분석으로 문장을 복원하여 어휘 오인식률을 감소하였다. 시스템 분석을 위해 음소 유사률과 신뢰도를 이용하여 오류 보정률을 구하였으며, 어휘 인식 과정에서 오류로 판명된 어휘에 대하여 오류 보정을 수행하였다. 에러 패턴 학습을 이용한 방법과 오류 패턴 매칭 기반 방법, 어휘 의미 패턴 기반 방법의 성능 평가 결과 2.0%의 인식 향상률을 보였다.

고립단어 인식 시스템에서의 거절기능 구현 (An Implementation of Rejection Capabilities in the Isolated Word Recognition System)

  • 김동화;김형순;김영호
    • 한국음향학회지
    • /
    • 제16권6호
    • /
    • pp.106-109
    • /
    • 1997
  • 고립단어 음성인식 시스템이 실용적이 되려면 인식 대상 이외의 단어를 거절할 수 있는 기능이 요구된다. 본 논문에서는 집단화된 음소 모델과 likelihood ratio에 의한 후처리 방법을 사용하여 거절기능을 구현하는 방법을 제안하였다. 기본적인 음성인식 시스템은 단어 단위 연속 HMM을 사용하였고, 6개의 집단화된 음소 모델들은 음성학적으로 균형잡힌 음성 데이터베이스를 이용하여 훈련된 45개의 문맥독립 음소 모델들로부터 통계적 방법에 의하여 생성되었다. 22개의 부서 명칭을 대상으로 한 화자독립 고립단어 인식시스템에서 거절성능을 시험하여 본 결과, 가장 높은 확률값과 두 번째 높은 확률값을 가지는 후보단어들 간의 차이값에 의하여 거절기능을 수행하는 기존의 후처리 방법보다 성능이 향상됨을 알 수 있었다. 또한 이 집단화된 음소모델은 인식 대상 어휘가 다른 고립단어 인식 시스템에도 재훈련 없이 그대로 사용될 수 있다.

  • PDF

Likelihood Ratio에 의한 음소분류에 관한 연구 (A Study on the Phonemic Segmentation by Likelihood Ratio)

  • 이기영;배철수;최갑석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 전기.전자공학 학술대회 논문집
    • /
    • pp.20-24
    • /
    • 1988
  • This paper proposed the phonemic segmentation method that employed two types of Likelihood Ratio that measures the change of spectral structure. By this method, isolated digits and words of VCV form are segmented into phoneme-unit and especially, first-burst part in an aspirated bilabial plosive is divided.

  • PDF

음절 복원 알고리즘을 이용한 핵심어 오류 보정 시스템 (Key-word Error Correction System using Syllable Restoration Algorithm)

  • 안찬식;오상엽
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권10호
    • /
    • pp.165-172
    • /
    • 2010
  • 어휘 인식 시스템의 오류 보정방법으로는 오류 패턴매칭 기반 방법과 어휘의미 패턴 기반방법이있으며, 이들 방법에서는 오류 보정을 위해 핵심어를 의미적으로 분석하지 못하는 문제점을 가지고 있다. 이를 개선하기 위해 본 논문에서는 음절 복원 알고리즘을 이용한 핵심어 오류 보정 시스템을 제안한다. 인식된 음소 열을 의미 분석 과정을 거쳐 음소가 갖는 의미를 파악하고 음절 복원 알고리즘을 통해 음운 변동이 적용되기 이전의 문자열로 복원하므로 핵심어를 명확히 분석하고 오인식을 줄일 수 있다. 시스템 분석을 위해 음소 유사율과 신뢰도를 이용하여 오류 보정율을 구하였으며, 어휘 인식 과정에서 오류로 판명된 어휘에 대하여 오류 보정을 수행하였다. 에러 패턴 학습을 이용한 방법과 오류 패턴 매칭 기반 방법, 어휘 의미 패턴 기반 방법의 성능 평가 결과 3.0%의 인식 향상율을 보였다.

다양한 신뢰도 척도를 이용한 SVM 기반 발화검증 연구 (SVM-based Utterance Verification Using Various Confidence Measures)

  • 권석봉;김회린;강점자;구명완;류창선
    • 대한음성학회지:말소리
    • /
    • 제60호
    • /
    • pp.165-180
    • /
    • 2006
  • In this paper, we present several confidence measures (CM) for speech recognition systems to evaluate the reliability of recognition results. We propose heuristic CMs such as mean log-likelihood score, N-best word log-likelihood ratio, likelihood sequence fluctuation and likelihood ratio testing(LRT)-based CMs using several types of anti-models. Furthermore, we propose new algorithms to add weighting terms on phone-level log-likelihood ratio to merge word-level log-likelihood ratios. These weighting terms are computed from the distance between acoustic models and knowledge-based phoneme classifications. LRT-based CMs show better performance than heuristic CMs excessively, and LRT-based CMs using phonetic information show that the relative reduction in equal error rate ranges between $8{\sim}13%$ compared to the baseline LRT-based CMs. We use the support vector machine to fuse several CMs and improve the performance of utterance verification. From our experiments, we know that selection of CMs with low correlation is more effective than CMs with high correlation.

  • PDF

대용량 음성인식을 위한 인식기간 감축 알고리즘 (A Recognition Time Reduction Algorithm for Large-Vocabulary Speech Recognition)

  • 구준모;은종관
    • 한국음향학회지
    • /
    • 제10권3호
    • /
    • pp.31-36
    • /
    • 1991
  • 본 논문에서는 대용량 음성인식 시스템의 인식시간을 감축하기 위하여 후보단어를 선정하는 효과적인 방법을 제안하고 이 방법의 성능을 향상시키기 위하여 spectral smoothing과 temporal smoothing을 사용하는 것에 관하여 연구하였다. 제안된 방법은 사전내의 각 단어에 대하여 음성인식 단위의 음성 spectrum관찰확률과 길이정보를 이용하여 대강의 관찰확률을 계산하여 후보단어를 선정한다. 제안된 방법을 음소단위의 HMM을 이용하는 1160단어 인식 시스템에 적용한 결과, 전체 계산량의 74% 가량을 감축할 수 있었으며 이때 인식율의 감소는 매우 작았다. 또한 제안된 대감의 likelihood점수 계산방법은 Viterbi방법에 의하여 계산되는 likelihood 점수를 잘 추정함을 알 수 있었다.

  • PDF

확률적 매칭을 사용한 음성 다이얼링 시스템 (Voice Dialing system using Stochastic Matching)

  • 김원구
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.515-518
    • /
    • 2004
  • This paper presents a method that improves the performance of the personal voice dialling system in which speaker Independent phoneme HMM's are used. Since the speaker independent phoneme HMM based voice dialing system uses only the phone transcription of the input sentence, the storage space could be reduced greatly. However, the performance of the system is worse than that of the system which uses the speaker dependent models due to the phone recognition errors generated when the speaker Independent models are used. In order to solve this problem, a new method that jointly estimates transformation vectors for the speaker adaptation and transcriptions from training utterances is presented. The biases and transcriptions are estimated iteratively from the training data of each user with maximum likelihood approach to the stochastic matching using speaker-independent phone models. Experimental result shows that the proposed method is superior to the conventional method which used transcriptions only.

  • PDF